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ABSTRACT 
 

Dendrites and the dendritic spines of neurons play key roles in the connectivity of the 

brain and have been recognized as the locus of long-term synaptic plasticity, which is correlated 

with learning and memory. The development of dendrites and spines in the mammalian central 

nervous system is a complex process that requires specific molecular events over a period of 

time. It has been shown that specific molecules are needed not only at the spine’s point of 

contact, but also at a distance, providing signals that initiate a cascade of events leading to 

synapse formation. The specific molecules that act to signal neuronal differentiation, dendritic 

morphology, and synaptogenesis are tightly regulated by genetic and epigenetic programs. It has 

been shown that the dendritic spine structure and distribution are altered in many diseases, 

including many forms of mental retardation (MR) such as Rett syndrome, and can also be 

potentiated by neuronal activities and an enriched environment. Because dendritic spine 



www.manaraa.com

v 

 

pathologies are found in many types of MR, it has been proposed that an inability to form normal 

spines leads to the cognitive and motor deficits that are characteristic of MR. Epigenetic 

mechanisms, including DNA methylation, chromatin remodeling, and the noncoding RNA-

mediated process, have profound regulatory roles in mammalian gene expression. My 

dissertation research focused on two aspects of epigenetic mechanisms, Mecp2-DNA 

methylation pathway and noncoding microRNAs that regulate the development and maturation 

of dendrites and spines. It is well known that Rett Syndrome, a severe postnatal childhood 

neurological disorder is mostly caused by mutations in the MECP2 gene. My studies focused on 

the role of MeCP2-mediated epigenetic regulation in postnatal brain development in a Mecp2-

deficient mouse model. I found that, while Mecp2 was not critical for the production of 

immature neurons in the dentate gyrus (DG) of the hippocampus, the newly generated neurons 

exhibited profound deficits in neuronal maturation, including delayed transition into a more 

mature stage, altered expression of presynaptic proteins, and reduced dendritic spine density. 

Furthermore, I found that cultured neurons and brains lacking Mecp2 exhibited altered 

expression of microRNAs. My studies demonstrate that one brain-enriched microRNA, miR-

137, has a significant role in regulating neuronal maturation by translational regulation of Mind 

bomb1. Despite extensive efforts to understand the molecular regulation of dendrite and spine 

development, epigenetic and non-coding RNA pathways have only recently been considered. In 

this thesis, I will first summarize the literature on epigenetic mechanisms that regulate the 

development and maturation of dendrites and spines, and discuss some general methodologies as 

well as recent technological advances in biology and neurosciences. I will then present my own 

data to show how epigenetic alterations could result in the morphological and phenotypic 

abnormalities that are a fundamental characteristic MR, such as Rett syndrome.   
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CHAPTER 1: 
Neuronal Dendrites and dendritic spines in development and 

disease 
 

(Chapters 1-3 were published in a recent review article (Smrt and Zhao, 2010)) 

1.1 Introduction to neuronal dendrites and dendritic spines 

 

Santiago Ramon y Cajal, the founder of neuroscience and Nobel Prize winner, was the 

first to propose in the late 19th century that the nervous system is made up of individual neurons 

that are able to communicate with neighboring cells through long projecting axons and highly 

branched dendrites. He first described dendritic spines in 1891 as “the tips of charge or points of 

reception of impulses, their retraction would result in the individualization or disaggregation of 

neurons. The awake state would correspond to the swelling and lengthening of spines, while the 

resting state would correspond to the retraction of these appendages” (Cajal, 1891). 

Cajal’s observations were based on Golgi staining and a light microscope over 100 years 

ago. To date, significant advances in biology have confirmed that dendritic spines can undergo 

long-term modifications, such as changes in number and shape, in response to novel experiences, 

suggesting that dendritic spines are the locus of long-term synaptic plasticity associated with 

memory storage in the brain (Segal, 2005). In light of advances in genetic and molecular tools, 

scientists still ponder why dendrites and dendritic spines become grossly impaired in individuals 

faced with mental retardation (MR) and neuropathology. 
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The brain is composed of a complex network of neurons that communicate with each 

other through specialized cell junctions called synapses (Figure 1.1A,B). Most of these synaptic 

junctions are chemical synapses, in which a chemical neurotransmitter is released by the axon of 

the presynaptic neuron. The neurotransmitter can diffuse into the synaptic cleft (space between 

synaptic contact), where it can act on the corresponding neurotransmitter receptors on the 

postsynaptic neuron (Figure 1.1B). The synapses are typically found on the dendritic shaft, 

located on stubby spines and filipodia (long, thin dendritic protrusions), and are characterized by 

the clustering of certain proteins on the pre- and postsynaptic sites of contact. Dendritic spines 

have been classified into many types based on their shape. The most common types of spines in 

the central nervous system (CNS), and also the primary focus of pathological studies, are the 

following: mushroom-like spines with a bulbous head attached to the dendrite by a narrow neck,  

Figure 1.1: Schematic diagram of a mature neuron and synapse. A: A mature neuron has elaborate processes that 
are composed of multiple dendrites and one axon. Dendrites contain a large number of dendritic spines that form 
contacts, or synapses, with other neurons. The synapses are typically found on the dendritic shaft, located on 
stubby spines and filipodia. B: A neuronal synapse is the point of contact between two neurons, a presynaptic 
neuron and a postsynaptic neuron. It is characterized by specific synaptic proteins located on the pre and 
postsynaptic sites. 
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short and stubby spines with no neck, and long and thin spines with no head enlargement (Fiala 

et al., 2002). It is believed that long, thin spines are mostly immature spines, and they develop 

into the more mature mushroom-like spines (Figure 1.2). During development, dendrites start out 

with no spines, and during synaptogenesis and neuronal maturation, filipodia emerge from the 

dendrites and form nascent synapses with axons (Fiala et al., 1998; Fiala et al., 2002). Mature 

synapses are gradually formed on mushroom-like spines that have a well-defined head (Harris 

and Kater, 1994), and the density of mature spines increases along the dendrite as the neuron 

matures and forms functional connections with the surrounding brain circuitry (Zhao et al., 2006) 

(Figure 1.3). More about the specific molecular machinery found in the mature excitatory 

synapse will be discussed in the next section. 

 

1.2 Activity-dependent modulation of gene expression controls dendrite 

and spine development 

 

Glutamatergic neurons in the mammalian brain have elaborate dendrites covered with 

dendritic spines. These spines function as the primary sites of excitatory synaptic input for the 

neuron (Alvarez and Sabatini, 2007). The formation of an excitatory synapse in the CNS during  

Figure 1.2: Common dendritic spine types in the 
CNS. Three types of dendritic spines are commonly 
found in the CNS. A: the long and thin filipodia spine 
with no head enlargement; B: the mushroom-like 
spine with a bulbous head attached to the dendrite by 
a narrow neck; and C: the short and stubby spine with 
no neck. It is believed that long, thin spines are 
mostly immature spines, and they develop into the 
more mature mushroom-like spines. 



www.manaraa.com

4 

 

 

development is initiated by the contact between the presynaptic axon and the postsynaptic 

dendrite, followed by the recruitment of pre- and postsynaptic proteins to the site of contact, and 

the stabilization of these interactions. Dendritic development and synapse formation are highly 

influenced by neuronal activities. Spine pruning occurs during early postnatal development, 

characterized by an experience-dependent loss of spines that selectively maintains spines of 

Figure 1.3: The stages of morphological development of dendrites and dendritic spines. A: Immature neurons 
have shorter dendrites, and these dendrites have no spines. B: During synaptogenesis and neuronal maturation, 
neurons develop a more complex dendritic arbor, and these dendrites begin to form spines. Some of these spines 
start to receive input from the axons of other neurons. C: Mature neurons have elaborate dendritic trees and a high 
density of mature spines. These neurons form functional connections with other neurons and participate in the 
brain circuitry. 
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active synapses resulting in the appropriate maturation of neuronal circuitry (Grutzendler et al., 

2002).  

A major area of research in neurodevelopment is how neuronal activity-dependent 

modulation of gene expression affects dendritic development and synapse formation. It has been 

shown that dendritic and spine morphogenesis depends on proper neuronal development and 

activation of glutamate receptors, which maintain appropriate connections between neurons 

(Parrish et al., 2007b). Activation at the synapse leads to calcium influx into the dendrites of the 

postsynaptic neuron, which regulates the dendritic outgrowth of postsynaptic neurons. Calcium 

not only functions locally at the site of entry, but also leads to changes in gene transcription in 

the nucleus. Calcium influx through the NMDA receptor or voltage-sensitive calcium channels 

(VSCCs) during development can activate many signaling pathways, such as the calcium-

sensitive calcium/calmodulin kinases (CaMKs) known to be important for signal transduction in 

neurons. For example, activated CaMKII regulates the number of AMPA receptors at the 

synapse and the complexity of neuronal dendrites by influencing actin cytoskeleton (Dillon and 

Goda, 2005). In cultured neurons, CaMK activity initiates signaling to the nucleus, where 

activation of cAMP response element binding protein (CREB) leads to activity-dependent gene 

expression and subsequent dendritic morphological changes (Redmond et al., 2002; Wayman et 

al., 2006). Thus, intrinsic gene expression programs can be modified by neuronal activity to 

modulate spine morphogenesis and dendritic development (Cohen and Greenberg, 2008). 

 

1.3 Dendritic spine pathology 
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Because spines are the key sites of synaptic input, altered spine morphology associated 

with pathological conditions may have a dramatic impact on the properties of the individual 

neuron, the neural networks, and mental function as a whole. In fact, dendritic spine distribution 

and structure is abnormal in many diseases and injuries, as well as many forms of MR (Figure 

1.4). Thus, it has been proposed that the cognitive and motor deficits observed in MR may result 

from altered spine development and function. Understanding the effect of altered spines in 

pathological conditions will provide researchers with a better understanding of how spines 

contribute to normal synaptic conditions during development and learning in the adult brain.  

As summarized in Table 1, morphological dendritic spine abnormalities are found in 

many types of pathological conditions, including MR such as is seen in autism spectrum disorder 

(Persico and Bourgeron, 2006), Rett syndrome (Zhou et al., 2006), and fragile X syndrome 

(Bagni and Greenough, 2005). Spine abnormalities are also found in schizophrenia (Lewis et al., 

2003b), depression, stress (Pittenger and Duman, 2008), drug addiction (Robinson and Kolb, 

2004), epilepsy, and neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s 

disease (Day et al., 2006), and Huntington’s disease (Spires et al., 2004). 

 

Table 1.1: Spine pathology related to genetic mutations and mental retardation. 

Figure 1.4: Pathological changes in spine density. Common pathological alterations in dendritic spines are altered 
spine density and abnormal spine shapes. A: Healthy neuronal dendrites contain spines with a typical variation of 
spine types. B: Reduced spine density is common in many cognitive and developmental disorders, such as Rett 
syndrome. C: Increased spine density with abnormally increased long and thin types of spines is commonly found 
in patients with fragile X syndrome. 
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Disorder Genetic abnormality Spine pathology Reference 
Rett syndrome MECP2 mutation Reduced spine 

density, reduced 
dendritic complexity 
and maturation 

(Amir et al., 1999; 
Belichenko et al., 1994; 
Moretti et al., 2006; Smrt 
et al., 2007) 

Fragile X syndrome FMR1 protein deficiency Increased spine 
density, abnormal 
spine morphology 

(Comery et al., 1997; 
Hinton et al., 1991; Irwin 
et al., 2001; Wisniewski et 
al., 1991) 

Angelman syndrome Chromosome 15q11-q13, 
UBE3A 

Reduced spine 
density, abnormal 
spines, small RNA 
pathway 

(Ding et al., 2008; Lalande 
and Calciano, 2007; Miura 
et al., 2002) 

Prader–Willi syndrome Chromosome 15q11-q13 Autism, reduced 
cognitive ability 

(Battaglia, 2005; Sahoo et 
al., 2008) 

Down’s syndrome Chromosome 21 trisomy Reduced spine 
density, reduced 
dendritic complexity 

(Ferrer and Gullotta, 1990; 
Marin-Padilla, 1972; 
Marin-Padilla, 1976; 
Suetsugu and Mehraein, 
1980; Takashima et al., 
1981; Takashima et al., 
1994) 

Lafora disease EPM2 mutation Reduced spine density (Busard et al., 1987) 
Patau syndrome Chromosome 13 trisomy Abnormal spine 

morphology 
(Marin-Padilla, 1972) 

Tuberous sclerosis Mutations of TSC1 or TCS2 
genes 

Reduced spine 
density, abnormal 
spine morphology 

(Machado-Salas, 1984) 

Niemann–Pick disease Deficiency of 
sphingomyelinase 

Reduced spine 
density, reduced 
dendritic complexity 

(Higashi et al., 1993; 
Sarna et al., 2003; Walkley 
and Baker, 1984) 

Potocki–Lupski syndrome Duplications of 17p11.2 Autism (Potocki et al., 2007) 
Smith–Magenis syndrome Chromosome 17p11.2, RAI1 

mutations 
Autism, abnormal 
brain anatomy 

(Elsea and Girirajan, 2008; 
Slager et al., 2003) 

Williams–Beuren 
syndrome 

7q11.23 (CYLN2, LIMK1, 
FZD9) 

Reduced brain 
volume, altered spine 
morphology 

(Berg et al., 2007; 
Hoogenraad et al., 2002; 
Lim et al., 2007; Meng et 
al., 2002; Zhao et al., 
2005) 

22q11.2 deletion 
syndrome and DiGeorge 
syndrome 

Deletion of 22q11.2, DGCR8 miRNA pathway, 
autism, smaller 
spines, smaller 
dendrites 

(Gothelf et al., 2007; 
Kobrynski and Sullivan, 
2007; Lee and Lupski, 
2006; Stark et al., 2008) 

 
Aberrant dendritic spine development includes a broad range of changes in spine 

morphology and structure, such as increases or decreases in spine density, altered spine size or 

shape, dendritic beading with subsequent loss of spines, and ectopic spines in abnormal locations 

(Fiala et al., 2002). Since the shape and structure of a spine are closely associated with its 

function, the presence of abnormal spine morphology in many of these diseases suggests that the 



www.manaraa.com

8 

 

resulting cognitive phenotype is a result of dysfunctional spines. Understanding the effect of 

altered spines in pathological conditions will provide researchers with a better understanding of 

how spines contribute to normal synaptic conditions during development and learning in the 

adult brain. 

The spine pathogenesis among various types of MR is strikingly similar. These 

observations suggest that various genetic and epigenetic deficits related to MR may be the result 

of abnormal dendrites and spines leading to the disruption of neural homeostasis and the ability 

of the brain to return to a set point following perturbation (Ramocki and Zoghbi, 2008). 

Interestingly, many of the MR susceptibility genes encode proteins that regulate neuronal 

dendrite and spine development. This suggests that the molecular factors involved in behavioral 

and cognitive processes function in a tightly regulated homeostatic fashion. More specifically, 

single genes or noncoding RNAs do not encode specific cognitive processes, but instead encode 

biological processes. It is when a particular biological process, such as synaptic transmission, is 

disrupted during development that we can appreciate the resulting numerous neurological 

phenotypes.  

Despite the fact that several protein pathways have been identified as critical players in 

spine development and pathology, the molecular pathogenesis of aberrant spine morphology in 

these diseases has yet to be clearly and comprehensively elucidated. It is apparent that complex 

programs of gene expression work to shape the developing nervous system. In this review, we 

will discuss the roles of epigenetic mechanisms in this important process. Revealing the roles of 

signaling factors and epigenetic gene regulators in dendritic spine pathologies will provide us 

with a better understanding of dendritic and spine disease and offer new approaches to treating 

neurodevelopmental disorders.   
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CHAPTER 2: 
Epigenetic regulations are critical for neuronal dendritic 

development 
 

2.1 Introduction to epigenetic regulation 

 

In eukaryotic cells, genomic DNA exists in the form of chromatin and is tightly 

associated with histones and other chromatin proteins. Epigenetic regulation is defined as 

heritable changes in gene expression that are not coded within the DNA sequence itself. 

Epigenetic modulation of the genome involves three interacting systems, DNA methylation, 

histone modification (Egger et al., 2004; Li and Zhao, 2008), and noncoding RNA-mediated 

processes (Li and Zhao, 2008) (see Table 2). Recent literature has demonstrated that the 

phenotype of the cell is not only dependent on the genotype, but also the epigenotype. For 

example, DNA methylation within promoter regions (e.g., CpG islands) can result in heritable 

silencing of gene expression and has likely evolved as a host defense mechanism against viral 

sequences (Bestor and Tycko, 1996; Yoder et al., 1997). This type of epigenetic modulation can 

imprint dynamic environmental changes on a fixed genome, resulting in a stably transmitted 

alteration of phenotype, and has long been proposed to be an epigenetic silencing mechanism of 

fundamental importance (Holliday and Pugh, 1975; Riggs, 1975). The epigenotype shows far 

greater plasticity than the genotype during normal development, and disruption of these systems 

can lead to inappropriate expression or silencing of genes, resulting in “epigenetic diseases.” 

This section will review the epigenetic mechanisms that regulate dendrite and spine development 

and related diseases. 
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Table 2.1: Summary of epigenetic modifications and their direct effects on gene expression. 
Epigenetic 
modification 

Target Direct Effect on gene 
expression 

DNA methylation CpG dinucleotides Repression 

Histone methylation 

H3 (K4,K36,K79) Activation 

H3 (K9, K27), H4(K20) Repression 

H3 (R17,R23), H4(R3) Activation 

Histone acetylation H3 (K9,K14,K18,K56), H4 
(K5,K8,K13,K16) Activation 

microRNA mRNA Repression 
 
 

2.2 DNA methylation 

 

DNA methylation involves covalent modification of cytosine at position C5 in CpG 

dinucleotides. Over 70% of CpG dinucleotides in the mammalian genome are methylated, and 

most DNA methylation occurs at CpG dinucleotides. The exception is CpG islands, defined as 

more than 500 base pairs of sequence composed of 55% GC content. CpG islands are found in 

the promoters and the first exon of about 40% of the mammalian genes, and they are normally 

kept free of DNA methylation by mechanisms that are still unclear (Takai and Jones, 2002). 

Methylation of CpG islands is associated with stable heritable transcriptional silencing (Jones 

and Baylin, 2002). The methylation of CpG dinucleotides is catalyzed by several DNA 

methyltransferases (DNMTs). The de novo establishment of DNA methylation relies on 

DNMT3a and 3b and cofactor DNMT3L, whereas the maintenance of DNA methylation depends 

on DNMT1, which specifically recognizes semi-methylated DNA and methylates the remaining 

strand (Bestor, 2000; Jaenisch and Bird, 2003; Robertson et al., 2000). Mammalian DNA 

methylation has been implicated in a diverse range of cellular functions, including tissue-specific 
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gene expression, cell differentiation, cell fate determination, genomic imprinting, and X 

chromosome inactivation (Bird, 2002b). Here we focus on the function of DNA methylation in 

neurodevelopment.  

Deletion of DNMT1 in neural progenitor cells leads hypomethylation in neurons and 

subsequent abnormalities in synaptic maturation and function (Golshani et al., 2005; Hutnick et 

al., 2009). Although deletion of DNMT1 in neuronal precursors at E9-E10 leads to normal 

development through birth, it adversely affects neuronal survival after birth, resulting in death of 

the mice (Fan et al., 2001). Recently, Feng et al. have shown that DNMT1 and DNMT3a 

regulate synaptic function in neurons (Feng et al., 2010). Feng’s group made use of conditional 

mutant mice that lacked Dnmt1, Dmnt3a, or both specifically in post-mitotic forebrain neurons 

of the postnatal mice. Their findings suggest that DNMT1 and DNMT3a are required for 

synaptic plasticity and learning and memory, likely due to their functions in maintaining DNA 

methylation and controlling gene expression in post-mitotic neurons. Although these studies 

provide sufficient evidence that DNMTs and DNA methylation are critical for neuronal 

development, the function of DNA methylation in post-mitotic neurons of the adult brain is still 

for the most part unknown. DNMT1 is highly expressed in neurons, and the deletion of DNMT1 

from post-mitotic neurons of postnatal brains leads to neuronal death (Fan et al., 2001), 

suggesting that DNMT1 may have other roles in addition to its methyltransferase activity. In 

fact, DNMT1 has been shown to form a complex with HDACs and participates in transcriptional 

repression (Jaenisch and Bird, 2003; Robertson et al., 2000), suggesting that DNMTs may have 

complex roles in transcriptional regulation. Researchers have yet to identify specific genes 

affected by Dnmt deficiency, which impacts synaptic function, as well as learning and memory. 
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Despite the magnitude of literature on DNMTs and DNA methylation, much less is 

known about DNA demethylation. It has been proposed that the steady-state methylation of a 

particular gene is a dynamic equilibrium between methylase and demethylase activities. It has 

been found that MBD2 has DNA demethylase activity (Bhattacharya et al., 1999; Detich et al., 

2002). It has also been proposed that Gadd45a erases DNA methylation marks by DNA repair-

mediated DNA demethylation (Barreto et al., 2007). More recently, Gadd45b was found to be 

important for the activity-induced demethylation of promoters and the expression of 

corresponding genes critical for adult neurogenesis, such as Bdnf and Fgf-1 (Ma et al., 2009). It 

was also shown that demethylation can take place in the absence of DNMT1 and DNMT3a in 

vivo (Feng et al., 2010). Although researchers have yet to elucidate the mechanisms of active 

DNA demethylation in the brain, it has been proposed that DNA oxidation and repair are 

possible mechanisms underlying this process.  

DNA methylation represses gene transcription either through directly blocking the access 

of transcription factors to their binding sites or through indirectly recruiting methyl-CpG binding 

proteins (MBDs). The MBD protein family consists of a growing number of DNA-binding 

proteins with the ability to recognize methylated CpGs in the genome. The MBD family includes 

at least MBD1, MBD2, MBD3, MBD4, MECP2, and Kaiso (Klose and Bird, 2006). In a sense, 

MBDs translate genomic CpG methylation into gene expression changes; therefore, these 

proteins are the central components of the DNA methylation pathway. DNA methylation is 

important in mammalian brain development (Chahrour and Zoghbi, 2007). One of the best 

examples of this occurs in Rett syndrome (RTT), an X-linked dominant pervasive 

neurodevelopmental disorder caused by de novo mutations in methyl-CpG binding protein 2 

(MeCP2) (Amir et al., 1999). Mecp2 is thought to be involved in the structural conformation of 
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chromatin. Once MeCP2 is bound to Methylated DNA, MeCP2 recruits a complex of chromatin-

remolding enzymes that help to condense the DNA surrounding the MeCP2 binding site, and 

silence transcription (Bird, 2002b; Chahrour and Zoghbi, 2007).  Mutations in MeCP2 lead to 

Rett Syndrome, a severe neurodevelopmental disorder. As discussed below, extensive evidence 

suggests that Mecp2 plays an important role in dendritic development and neuronal maturation 

(Smrt et al., 2007). 

 

2.3 Histone code 

 

Histones are abundant nuclear proteins. Eukaryotic genomic DNA wraps around histones, 

which form the basic unit of chromatin, the nucleosome that consists of ~147 base pairs of DNA 

wrapped around a core histone octamer (~1.65 turns). Each histone octomer includes two copies 

of H2A, H2B, H3, and H4 histones, and all of them can undergo different types of post-

translational modifications, such as acetylation, methylation, and phosphorylation (Lachner et 

al., 2003). The types and sites of histone modifications, the so-called “histone code,” have a 

significant impact on chromatin structure and gene expression.  

Chromatin is present in two states: heterochromatin and euchromatin. Heterochromatin is 

in a condensed state that is repressive for gene transcription. When the chromatin is in an open 

state, called euchromatin, genes can be transcribed. Chromatin remodeling is a mechanism that 

alters the chromatin structure and functions to modulate DNA-protein interactions and gene 

activity without changing genomic DNA sequences. The chromatin structure and maintenance 

are not only critical for gene expression, but also for many cellular processes, such as 
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chromosome segregation during mitosis and X-chromosome inactivation (Grewal and Elgin, 

2007).  

Recent genome-wide studies have demonstrated that histone modifications, as well as 

recruitment of other chromatin proteins, can be used as markers for gene expression state. 

Among histone modifications, lysine acetylation and methylation are the most characterized 

markers. For example, methylation of a histone at lysine 4 (H3K4), H3K36, or H3K79 is 

correlated with open chromatin and generally active gene transcription, whereas methylation of 

H3K9, H3K27, or H4K20 is correlated with condensed chromatin and gene inactivation (Krogan 

et al., 2003; Santos-Rosa et al., 2002; Schubeler et al., 2004). Additionally, mono-, di-, and 

trimethylation at the same lysine residues lead to different levels of gene activation or repression 

and are involved in distinct cellular pathways (Barski et al., 2007). Histone acetylation leads to 

less condensed chromatin structure and can be used to mark transcriptionally active regions. On 

the other hand, histone hypoacetylation is associated with more condensed heterochromatin and 

is used to mark transcriptionally inactive regions (Grewal and Elgin, 2007). Additionally, 

histones are subject to a number of other modifications, including phosphorylation, 

ubiqutinylation, etc. (Lachner et al., 2003). Thus, post-translational modifications of histones 

demonstrate a high degree of diversity and complexity and reflect the importance of the “histone 

code” in gene expression regulation.  

The enzymes that catalyze histone modifications are critical components of the 

epigenome and play important roles during neurodevelopment. For example, studies of histone 

acetylation have focused on two opposing enzymes, histone acetyltransferases (HAT) that 

catalyze acetylation, and histone deacetylases (HDAC) that catalyze deacetylation. Transcription 

activators can either recruit HATs or utilize their own internal HAT domains (for example CREB 
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binding protein, CBP) to catalyze histone acetylation to promote active chromatin structure. 

Conversely, transcription repressors can recruit HDACs that lead to histone deacetylation and 

gene repression. The opposing activities of HATs and HDACs are important for gene 

transcription regulation and therefore are tightly regulated during development. Alteration of 

these processes leads to developmental disorders, such as Rubinstein-Taybi syndrome, which 

results from heterozygote mutations of CBP. It is thus not surprising that HDAC inhibitors, such 

as VPA, have been developed and used to treat diseases, including psychiatric disorders (Phiel et 

al., 2001). VPA has been shown to increase neuronal differentiation in hippocampal neural 

progenitors (Hsieh et al., 2004). More recently, VPA has been shown to alter the morphology of 

motor cortex neurons in a rat model of autism (Snow et al., 2008) and affect neurite outgrowth in 

mouse neuroblastoma cells (Yamauchi et al., 2008; Yamauchi et al., 2009). Another HDAC 

inhibitor, trichostatin A (TSA), has also been shown to increase neuronal differentiation of 

neural stem cells (NSCs) and enhance the dendritic length and complexity of NSC-derived 

neurons (Balasubramaniyan et al., 2006). More recently, it was found that the neuronal abundant 

HDAC2 suppresses synapse formation and dendritic spine development of hippocampal neurons 

through its negative regulation of multiple neuronal genes. The authors demonstrated that 

HDAC2 functions to suppress synaptic plasticity and memory formation (Guan et al., 2009). 

Another histone modification enzyme in the spotlight is enhancer of zeste homolog 2 

(Ezh2), a H3-K27 histone methyltransferase and a part of the Polycomb group (PcG) protein 

complexes. PcG proteins and Ezh2 are important for neurogenesis and stem cell function in the 

brain (Lee et al., 2006; O'Carroll et al., 2001). PcG proteins are known in to function in 

maintaining the bivalent chromatin state in stem cells (Boyer et al., 2006; Lee et al., 2006). For 

example, genes in embryonic stem cells related to differentiation contain both activating 
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(methylated-H3K4) and repressing (trimethylated-H3K27) chromatin markers (Azuara et al., 

2006; Bernstein et al., 2006). This bivalent chromatin state is believed to “prime” genes for 

expression, but “hold them in check” at the same time, therefore control the balance between 

proliferation and differentiation in embryonic stem cells (Bernstein et al., 2007). Recently PcG 

proteins have been shown to regulate dendritic arborization in Drosophila sensory neurons in a 

cell-autonomous manner (Parrish et al., 2007a; Parrish et al., 2007b). We have recently found 

that Ezh2 expression is controlled by the crosstalk between MeCP2 and microRNAs (Szulwach 

et al., 2010), suggesting that aberrant regulation of histone methyltransferase could be involved 

in the mammalian neuronal development and pathogenesis of neurodevelopmental disorders.  

Together, these studies provide evidence that histone modification and chromatin 

structure modulation play significant roles in the regulation of neuronal development and the 

formation of dendrites and spines. 

 

2.4 Noncoding RNAs 

 

Of the human genome, only about 2% is comprised of coding genes, whereas more than 

80% of the genome is transcribed into RNA. Mounting evidence points to important roles for 

noncoding RNAs in gene expression regulation and cell phenotype determination (Li and Zhao, 

2008). MicroRNAs (miRNAs) are a class of small noncoding RNAs that are transcribed from the 

genome. Experimental evidence indicates that miRNAs function to modulate gene expression at 

the post-translational level by partial base-paring with the seed sequence located in the 3’UTR of 

the protein-coding mRNAs, leading to repression of translation efficiency or cleavage of the 

target mRNA (Filipowicz et al., 2008). miRNAs are expressed in many different tissues, 



www.manaraa.com

17 

 

particularly in the brain. The expression levels and patterns of miRNAs in the brain are 

dynamically regulated, suggesting that they play important roles in neuronal development 

(Barbato et al., 2008; Bushati and Cohen, 2007). One of the most studied brain specific miRNAs 

is miR-9. This miRNA has been of particular interest because it plays an important role in 

neurogenesis (Krichevsky et al., 2006), zebrafish brain patterning (Leucht et al., 2008), and its 

expression levels increase as neuronal precursors differentiate into the neurons. It was shown that 

miR-9 and miR-124 repress BAF53a, a process important for neural stem cell (NSC) 

proliferation and post-mitotic dendritic outgrowth (Yoo et al., 2009). Additionally, miR-9 

regulates the expression of orphan nuclear receptor (Tlx), a gene important for self renewal of 

NSCs (Shi et al., 2004). Additionally, Tlx also regulates expression of miR-9, demonstrating a 

regulatory loop that functions to regulate neurogenesis (Zhao et al., 2009). Tlx is also targeted by 

Let-7b (Zhao et al., 2010), a member of the let-7 miRNA family. The let-7 miRNA family was 

one of the first families of miRNAs found to regulate stem cell function (Liu and Zhao, 2009a; 

Rybak et al., 2008; Schwamborn et al., 2009). Additionally, let-7 is known to affect self-renewal 

and differentiation and it has been shown to interact with the 3’UTR of high mobility group A2 

(HMGA2), a known target of let-7. Together, let-7 and HMGA2 regulate the expression of 

p16Ink4a partially responsible for aged-dependent decline in self-renewal ability of brain NSCs 

(Nishino et al., 2008). 

It has been shown previously that miRNAs are important for a number of cellular 

processes, such as differentiation, apoptosis, metabolism, and dendritic development (Brennecke 

et al., 2003; Chang et al., 2004; Chen et al., 2004; Johnston and Hobert, 2003; Poy et al., 2004). 

Loss of important components of the miRNA pathway, such as Dicer and DGCR8, can alter the 

proliferation and differentiation of stem cells (Kanellopoulou et al., 2005; Wang et al., 2007). 
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Additionally, miRNAs have been demonstrated to play a role in the modulation of proliferation 

and differentiation of different stem cell types (Ivey et al., 2008; Szulwach et al., 2010).  

One of the most exciting recent discoveries in neuroscience is that miRNAs have a role in 

synaptic plasticity. Learning and memory in the brain requires the synapse to undergo long-term 

modifications. It is believed that these changes require the local translation of factors important 

for synaptic function (Sutton and Schuman, 2005). Local protein synthesis at the dendritic spine 

involves transport of mRNAs to the dendritic compartment; however, we know little about how 

translation at the synaptic compartment is regulated. In Drosophila melanogaster, it has been 

shown that mRNAs important for synaptic plasticity are targets of the miRNA pathway (Ashraf 

et al., 2006). The authors have analyzed the brains of RISC mutants and demonstrated that 

protein translation of neuronal CaMKII is increased in dicer-, armitage-, or aubergine-mutant 

brains. At the same time, Schratt et al. were able to directly link a specific miRNA to dendrite 

and spine development in mammalian neurons (Schratt et al., 2006). First, they showed that miR-

134 is localized in the dendrites of cultured mouse hippocampal neurons and is in dendritic 

spines that are apposed to synapsin-positive presynaptic terminals. Next, they found that 

overexpression of miR-134 leads to decreased spine size, whereas inhibition of endogenous miR-

134 leads to increased spine size. Therefore miR-134 may act as a negative regulator of dendritic 

spine maturation. Recently, the same group found that miR-138 is important for dendritic 

patterning and spine morphogenesis. miR-138 is highly enriched in the brain and is localized in 

the dendrites. The authors revealed that miR-138 negatively regulates dendritic spine size in rat 

hippocampal neurons by controlling the protein translation of APT1 (Siegel et al., 2009). In 

addition, brain-specific miR-124 is localized at presynaptic terminals of Aplysia and regulates 

synaptic plasticity by regulating the transcription factor CREB (Rajasethupathy et al., 2009). 
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Recently, a neuronal activity-dependent miRNA, miR-132, was shown to regulate dendritic 

development by targeting a Rho family GTPase-activating protein, p250GAP (Wayman et al., 

2008). We have demonstrated that neuron-enriched miR-137 has a significant impact in vivo and 

in vitro on the maturation and dendritic morphogenesis of young hippocampal neurons by 

regulating the translation of Mib1, a ubiquitin ligase known to be important for neurogenesis and 

neurodevelopment (Smrt et al., 2010). Overall, these reports demonstrate that miRNAs have the 

capacity to modulate the expression of mRNAs important for dendrite and spine development 

(Figure 3.1). The identification of these specific miRNAs that are important for dendritic 

development and synaptic plasticity are critical for our understanding of miRNAs in the CNS. 

New methods for detecting and quantifying miRNA at dendritic spines and synapses will help 

untangle the role of miRNAs in dendritic spine development and synaptic plasticity (see review 

(Schratt, 2009)). 

 

2.5 Epigenetic diseases that affect dendritic spine development 

 

Cognitive functions like learning and memory are extremely complex and require a 

precise balance of epigenetic and regulatory mechanisms. Extensive data support the link 

between epigenetic dysregulation of gene expression and neurodevelopmental disorders (Table 

1). In this section, we will focus on two of the best-characterized epigenetic disorders with 

known dendritic pathology, Rett syndrome and fragile X syndrome. 
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2.6 Rett syndrome 

 

Rett syndrome (RTT) is a neurodevelopmental disorder and an autism spectrum disorder. 

RTT is one of the most common forms of MR in young females. RTT patients develop normally 

until 6-18 months of age, and thereafter experience a myriad of neurological deficits, including 

seizures, ataxia, and stereotypical hand movements. RTT is caused by loss-of-function mutations 

in MECP2, an X-linked gene encoding the MeCP2 protein, one of the MBDs. MeCP2 is a central 

player in epigenetic regulation by binding methylated DNA and recruiting factors, such as 

histone deacetylases, leading to the repression of gene expression (Amir et al., 1999; Bird, 

2002b) (Figure 3.1).  

Extensive evidence supports the role of MeCP2 in neuronal maturation (Hagberg et al., 

1983a; Smrt et al., 2007). The neurological symptoms of RTT appear after a seemingly normal 

embryonic development, suggesting that MeCP2 is not required for early developmental 

neurogenesis. However, MeCP2 expression coincides with a period of synaptogenesis (Akbarian 

et al., 2001a; Shahbazian and Zoghbi, 2002b; Zoghbi, 2003), suggesting that MeCP2-dependent 

epigenetic modulation of gene expression is important for the maturation and maintenance of 

neurons during brain development. Several mouse models have contributed to our understanding 

of the function of MeCP2 in neuronal and dendritic spine development (Bienvenu and Chelly, 

2006; Chahrour and Zoghbi, 2007; Smrt et al., 2007). Expression studies in these animal models 

indicate that MeCP2 expression steadily increases during neuronal maturation, and is low or 

absent in immature neurons (Kishi and Macklis, 2004). Both RTT patients and Mecp2 mutant 

mice have excess immature neurons in the olfactory epithelium, and reduced transition of 

immature neurons into mature neurons (Matarazzo et al., 2004; Smrt et al., 2007). Additionally, 
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human postmortem tissues show less complex dendritic arborization, smaller soma size, 

decreased dendritic spine density (Figure 1.4B), and lowered levels of the dendritic cytoskeletal 

protein MAP2 in RTT brains (Armstrong, 2002; Kaufmann and Moser, 2000a). On the other 

hand, exogenous Mecp2 expression leads to increased neurite complexity in cultured neurons 

(Jugloff et al., 2005; Smrt et al., 2007). Consistent with human pathology, adult Mecp2 mutant 

mice have smaller soma sizes and less complex dendrites in layer II/III pyramidal neurons in the 

cortex (Kishi and Macklis, 2004). Using retroviral labeling of new cells, we have shown that 

Mecp2-deficient mice have reduced dendritic spine density and exhibit delayed maturation of 

newborn dentate granule neurons (Smrt et al., 2007). On the other hand, both we and others have 

shown that exogenous MeCP2 expression can lead to increased neurite complexity in cultured 

neurons (Jugloff et al., 2005; Smrt et al., 2010), further suggesting an important role for MeCP2 

in dendritic development.  

Extensive efforts have been devoted to the identification of downstream effectors of 

MeCP2, but only a handful of them have been verified, including BDNF, DLX5, and DLX6 

(Chahrour and Zoghbi, 2007; Tudor et al., 2002). Since these known targets cannot fully explain 

the deficits associated with MeCP2 deficiency, the identification of additional MeCP2 effector 

genes is needed to paint a full picture of the pathogenesis of RTT. Recently, epigenetic 

regulation of noncoding RNAs by MeCP2 has been suggested as a novel mechanism for 

understanding the pathogenesis of Rett syndrome. It was found that the miR-184 transcript is 

imprinted and exclusively expressed on the paternal allele and that MeCP2 binds upstream of 

miR-184 before neuronal depolarization, and releases after depolarization in an activity-

dependent manner (Nomura et al., 2008). However, the miR-184 expression level is decreased in 

Mecp2 KO brains, which contradicts the authors’ finding. It is possible that miR-184 is indirectly 
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regulated by MeCP2. In fact, we have found that miR-184 is directly regulated by MBD1 (Liu et 

al., 2010). We have shown that MeCP2 can directly regulate the expression of a subset of 

miRNAs in primary neural progenitor cells isolated from postnatal brains. One of these miRNAs, 

miR-137, modulates NPC proliferation and differentiation by regulating protein translation of 

Ezh2, a histone H3K27 methyltransferease (Szulwach et al., 2010). In developing neurons, miR-

137 represses dendrite and spine morphogenesis by targeting another neurodevelopmental factor, 

MIB1 (Smrt et al., 2010). Therefore, it is conceivable that MeCP2 regulates neuronal dendrite 

and spine development through noncoding RNAs. Functional crosstalk between the DNA 

methylation pathway and small regulatory RNA could be an important and novel mechanism 

regulating mammalian neurodevelopment (Figure 3.1).  

 

2.7 Fragile X syndrome 

 

Fragile X syndrome (FXS) is the most common cause of inherited MR and is attributed to 

mutations in the X-linked FMR1 gene. Epigenetic mechanisms have been implicated in the 

molecular mechanisms of the disease (Graff and Mansuy, 2009). Typically, fragile X syndrome 

is caused by the expansion of a polymorphic CGG repeat in the 5’ untranslated region (UTR) of 

the gene. If the CGG expansion reaches more than 200 repeats in female carriers, it is considered 

a full mutation. As a result, the repeat, the upstream CpG island, and the surrounding sequence 

become hypermethylated, and the gene is silenced (Oberle et al., 1991). One distinct 

characteristic of patients with FXS is that they have many more dendritic spines than normal 

individuals (Figure 1.4C), and their spines are longer and thinner, resembling immature spines 

(Hinton et al., 1991; Irwin et al., 2001). It has been suggested this is due to misregulated 



www.manaraa.com

23 

 

development and elimination. This phenotype is also seen in the mouse model of FXS (Comery 

et al., 1997; Greenough et al., 2001; Hinton et al., 1991; Irwin et al., 2001; Nimchinsky et al., 

2001). During dendritic spine development, synapses may be formed in excess numbers. 

Therefore, maturation and pruning are needed to establish the final synaptic pattern. In FXS, the 

activity-dependent events that lead to removal of excess or inappropriately placed synapses do 

not occur (Galvez et al., 2003).  

Fragile X mental retardation protein (FMRP) is an RNA-binding protein, part of the 

heterogeneous nuclear ribonucleoproteins (hnRNPs), which function in many aspects of mRNA 

metabolism and biology, including nuclear export of mRNA and subcellular localization (Van de 

Bor and Davis, 2004). FMRP is part of a large protein complex that is involved in the 

transportation and translation of mRNA in neurons. Studies have shown that abnormal spines in 

FXS are associated with impaired neuronal plasticity; therefore, it has been suggested that FMRP 

may function to transport coding and noncoding RNA to the synapse and participate in local 

protein synthesis in dendrites (Figure 3.1). Local protein synthesis in dendrites modulated by 

FMRP can potentially influence biochemical pathways or signaling cascades involved with spine 

morphogenesis, such as Rac1, MAP1B, CamKII, calbindin, and cadherins (Grossman et al., 

2006; Penagarikano et al., 2007). The mechanism by which FMRP regulates translation of 

synaptic factors at the dendritic spine is still under investigation. It has also been shown that the 

bidirectional transport of the FMRP-mRNA complex between the soma to the dendrites and 

spines is driven by neuronal activity (Antar et al., 2004; Antar et al., 2005; Ling et al., 2004), 

indicative of multiple roles for FMRP in the activity-dependent regulation of gene expression at 

the dendritic spine. 
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 It has been suggested that FMRP can associate with miRNAs and regulate the expression 

of a subset of target synaptic mRNAs (Fiore et al., 2008; Jin et al., 2004; Penagarikano et al., 

2007; Vanderklish and Edelman, 2005) (Figure 3.1). Recently, it was shown that a number of 

microRNAs, including miR125b and miR-132, can associate with FMRP in the mouse brain. 

While these miRNAs have opposing effects on dendritic spine morphology, knockdown of 

FMRP ameliorates the effects of overexpressing these microRNAs on spine morphology. The 

FMRP-associated miRNA 125b was found to target glutamate receptor subunit NR2A, 

suggesting FMRP-associated miRNAs may have a profound impact on synaptic plasticity, as 

well as on the pathophysiology of FXS (Edbauer et al., 2010). Although there is supporting 

evidence that FMRP collaborates with miRNAs to suppress the expression of genes important 

for dendritic spine morphology and synaptic plasticity, the details of how miRNA and FMRP 

interact are unclear. One proposed interaction is that miRNA and mRNA could act as the 

“kissing complex” RNA structure that has previously been proposed to bind the KH2 domain of 

FMRP (Bassell and Warren, 2008). 
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CHAPTER 3: 
Methods for studying the epigenetic regulation of dendrite and 

spine development 
 

3.1 Genetic and molecular methods 

 

Significant advances in genetics and molecular biology have made a profound impact on 

our understanding of neurodevelopment and disease. Here we will summarize a few important 

methods. 

 

3.1.1 Drosophila genetics 

Drosophila neurogenetics was born in Seymour Benzer’s lab at Caltech in the mid-1960s, 

when he proposed that genes can control behaviors in the fruit fly (Benzer, 1967). Benzer’s 

trainees went on to isolate the shaker (sk) gene, which is a member of the transient receptor 

potential (trp) ion channel family (Papazian et al., 1987). A number of classical studies of brain 

functional genetics involved the use of loss-of-function approaches in Drosophila (Hotta and 

Benzer, 1970; Lin et al., 1998; Lush et al., 1998; Min and Benzer, 1999). 

Many neurologic as well as other human diseases can be modeled using Drosophila to 

characterize genetic, epigenetic, and cellular pathways that lead to the disease state. Drosophila 

genetics are appealing to biologists because the tools of this trade are relatively simple and 

behavioral paradigms are well characterized, providing an extremely powerful method to go 

from mutant phenotypes to genotypes (forward genetics). Thus, the use of Drosophila models of 

human disease has grown rapidly and significantly contributed to our understanding of the 
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human pathogenesis. The molecular and cellular pathways in Drosophila are generally 

considered to be highly conserved with vertebrates; approximately 75% of human genes known 

to be associated with disease correspond to a Drosophila ortholog (Reiter et al., 2001). 

Drosophila can be used to conduct assays ranging from genetic screens to drug target validation. 

For example, genetic modifier screens can identify proteins and genes that interact with 

pathways associated with pathology (Egger et al., 2004). Additionally, flies are excellent subjects 

for high-throughput drug screening libraries and are responsible for the identification of mGluR5 

as a drug target for treating fragile X syndrome (Chang et al., 2008; Marsh and Thompson, 

2006). 

Drosophila has been used to understand the genetic pathways implicated in fragile X 

syndrome. The Drosophila genome contains the gene Drosophila fragile X-related (dfxr or 

dfmr1), which is homologous to FMR1 (Wan et al., 2000) and contains all the functional motifs 

related to FMRP. It was found that Drosophila genetics could be used to show dFXR plays a role 

in neuronal development, including synaptic formation, axonal growth, and dendritic 

development (Dockendorff et al., 2002; Lee et al., 2003; Michel et al., 2004; Morales et al., 

2002; Zhang et al., 2001).  

Drosophila has been used for studying epigenetic regulation related to histones and 

miRNAs. For example, dFMR1 is important in the microRNA (miRNA) pathway (Caudy et al., 

2002; Ishizuka et al., 2002; Yang et al., 2007) and has been shown to modulate miR-124a levels, 

which are important for dendritic branching in Drosophila (Xu et al., 2008). However, CpG 

methylation is essentially absent in Drosophila, making it an invalid model for studying 

mammalian DNA methylation.  
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3.1.2 Genetic mouse models 

Genetic manipulation of the mouse genome along with the characterization of mutant 

phenotypes has made a profound impact on our understanding of the pathophysiology of many 

human diseases. Mice and humans share 99% of their genes and have similar physiological and 

biochemical features, making genetic mouse models a powerful tool to study human disease 

(Rosenthal and Brown, 2007). This section will briefly describe the most common mouse models 

used to study Rett syndrome and fragile X syndrome, both implicated in abnormal spine 

development. 

 

The MeCP2 mouse 

To model Rett syndrome and related disorders in mice, three mouse models were 

generated with different Mecp2 genetic alterations. One of these models is the Mecp2 conditional 

KO mouse, which lacks either exon 3 or both exons 3 and 4 of the Mecp2 gene (Chen et al., 

2001a; Guy et al., 2001). These conditional knockout mice develop normally during the first 3-6 

weeks of life, and thereafter develop motor dysfunction, hind limb clasping, and breathing 

irregularities. Mutant brains show reduced brain weight and more densely packed neurons, but 

do not show neuroanatomical abnormalities. The female mice, which are heterozygous for the 

Mecp2 mutation (Mecp2+/-), show behavioral phenotypes that are less severe and with a later 

onset.  

Another mouse model was generated by truncating Mecp2 at amino acid 308. This 

truncation resulted in a hypomorphic allele that contains a truncated C-terminal region, 

reminiscent of Rett patients found with C-terminal deletions (Shahbazian et al., 2002a). These 
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mice have many similarities with the conditional knockout model described above, but have a 

less severe phenotype that leads to longer longevity. 

The third mouse model involves a two-fold overexpression of human MeCP2 that leads 

to an initial increase in synaptic plasticity and contextual learning; however, by 20 weeks of age 

the mice develop progressive neurological phenotypes, including motor abnormalities, hind limb 

clasping, and seizures, and they die by 1 year of age (Collins et al., 2004). This is also seen in the 

clinic, where duplication of MECP2 in human male patients causes severe MR. Moreover, 

selective overexpression of MeCP2 in post-mitotic neurons, under the tau promoter, lead to a 

progressive neurological phenotype in mice (Luikenhuis et al., 2004). 

In yet another mouse model, deletion of Mecp2 specifically in post-mitotic neurons using 

a CaMKII Cre transgene results in a phenotype resembling the Mecp2-/y knockout. This suggests 

that dysfunction of brain-specific MeCP2 leads to the neurological phenotype observed in Rett 

syndrome (Chen et al., 2001a; Gemelli et al., 2006). Additionally, when Mecp2 is expressed in 

post-mitotic neurons under the tau promoter in null mice, the Rett phenotype is rescued, further 

supporting this idea (Luikenhuis et al., 2004). Taken together, these studies demonstrate that 

perturbations in the homeostatic balance of MeCP2 expression can result in aberrant neurological 

functioning. 

 

The fragile X mouse 

FMR1 is highly conserved between humans and mice (Ashley et al., 1993). The FMR1 

knockout mouse was generated by disrupting exon 5 of the FMR1 gene by homologous 

recombination. This resulted in the absence of normal FMRP protein (Bakker et al., 1994). These 

mice show cognitive and anatomical impairments that are related to those seen in human 
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patients, making the fragile X knockout mouse an important model to study the function of 

FMRP. The fragile X knockout mouse displays distinct phenotypes, such as hyperactivity, 

special learning deficits, macroorchidism, and altered dendritic spines (Bakker et al., 1994; 

Kooy, 2003). Among the similarities between the human pathology and the mouse model is 

cognitive function. It has been found that FMR1 KO mice have special learning deficits when 

challenged with the Morris water maze and radial arm maze (Bakker et al., 1994; Kooy, 2003; 

Kooy et al., 1996; Mineur et al., 2002), two tests generally considered to reflect problems in 

hippocampal functioning (Logue et al., 1997; Morris et al., 1982). We found that FMR1 KO 

mice exhibit impaired hippocampal neurogenesis, which may contribute to the deficits in 

hippocampus-dependent learning (Luo et al., 2010). Among structural abnormalities in the 

mouse model, FMR1 KO mice show macroorchidism due to increased Sertoli cell proliferation 

(Slegtenhorst-Eegdeman et al., 1998). No gross neuroanatomical differences are observed in 

human patients or fragile X mouse brains (Bakker et al., 1994); however, it is well appreciated 

that patients and mice have long, thin immature spines with increased spine density in dendrites 

of the cortex (Comery et al., 1997; Irwin et al., 2001). FRM1 KO mice also show a propensity 

for epileptic seizures. Seizures occur in fragile X patients (Hull and Hagerman, 1993) and can be 

elicited by auditory stimuli in knockout mice (Chen and Toth, 2001). Epileptic seizures in fragile 

X are likely due to dendritic spine abnormalities in mice and patients. Fragile X mice have been 

used for developing therapeutic treatments, though the results are still controversial. 

Pharmalogical approaches have been proposed to compensate for the loss of FMRP (Kooy, 2003; 

Penagarikano et al., 2007). More work is required for a better understanding of the mechanism of 

how FMRP regulates mRNA translation, and how FMRP functions in activity-dependent local 

protein synthesis in the dendrite. 
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3.1.3 Isolation and RNA content analysis of synaptoneurosomes 

 

Synaptoneurosomes are small vesicle structures that are prepared by subcellular 

fractionation of brain homogenate. These structures are known to be enriched in dendritic spines 

(Lugli et al., 2008). It has been shown that polyribosomes, as well as many mRNAs, are present 

in dendrites and are recruited into dendritic spines (Bourne et al., 2007; Ostroff et al., 2002). 

Gene chip analysis of PSD fraction-associated mRNAs shows that mRNAs encoding many 

postsynaptic proteins are highly concentrated in PSD fractions (Suzuki et al., 2007). In addition, 

synaptoneurosomes also contain a large number of miRNAs. To characterize microRNA 

expression at the synapse, Lugli and collaborators isolated synaptic fractions from the mouse 

forebrain and analyzed microRNA expression using microarrays; enriched microRNAs were 

subsequently confirmed by qRT-PCR (Lugli et al., 2008). Lugli et al. found that a number of 

microRNAs were highly enriched in synaptoneurosomes and are predominately associated with 

PSDs. Their study further supports the role of miRNAs in protein synthesis at the synapse. It is 

likely that synaptosomes contain other types of RNAs and perhaps even DNA. With the 

development of next-generation sequencing, more synaptosome RNAs will be revealed, 

providing a better picture of the regulatory network governing dendrite and spine development.  

 

3.2 Histological methods 

3.2.1 The Golgi method 
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The Golgi method was discovered by Camillo Golgi and published in 1873 (Golgi, 

1873); however, it was popularized by Ramon e Cajal, who modified the method to study a 

myriad of species and tissues during many developmental periods, including the brain (De Carlos 

and Borrell, 2007). Since then, the application of the Golgi technique in neurosciences has been 

used to study morphological abnormalities in dendrites that are typical in diseases associated 

with MR. The pioneers of Golgi impregnations to study dendrites in MR were Huttenlocher 

(Huttenlocher, 1970; Huttenlocher, 1974) and Purpura (Purpura, 1975), who relied on post-

mortem and biopsy material. Using the Golgi method, Parpura found cortical pyramidal neurons 

to have shorter and less complex dendritic branches in individuals with unclassified MR 

(Purpura, 1974). This dendritic “dysgenesis” was also observed in individuals with 

chromosomopathies and genetic disorders associated with MR (Ferrer et al., 1984; Marin-

Padilla, 1972) (see Figure 1.4). Golgi impregnation in Rett syndrome post-mortem tissue showed 

a reduction in the dendritic arborization of cortical neurons throughout life in RTT patients 

(Armstrong et al., 1995). Similar results were obtained using this method in an animal model of 

RTT lacking MeCP2 (Kishi and Macklis, 2004). In fragile X syndrome, Golgi preparations 

showed long dendritic spines (Hinton et al., 1991), and the FMR1 knockout mouse also shows 

spine dysgenesis (Comery et al., 1997). 

 

3.2.2 Lipophilic dye 

Lipophilic dyes are fluorescent substances that can be microinjected into a single cell and 

visualized using a confocal microscope to study neuronal morphology in both animals and 

humans (Belichenko et al., 1994). This method offers advantages over the Golgi method because 

that experimenters can select the neuron(s) that are to be infused with the dye and perform digital 
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3-D reconstruction of dendritic morphology with laser confocal imaging, instead of the 

traditional light microscope with Camera-Lucida method. Belichenco’s group used the dye 

Lucifer Yellow and confocal microscopy to reconstruct the 3-D morphology of neurons in the 

prefrontal, motor, and temporal areas of RTT brain tissue. They showed reduced apical dendritic 

morphology and spine density, as well as dendritic segments lacking spines, which they called 

“naked dendrites,” in pyramidal neurons of the frontal cortex (Belichenko et al., 1997a; 

Belichenko et al., 1994). Belichenko and his colleagues used this method to study the 

morphology of neurons in a number of diseases and injuries associated with spine pathology 

(Belichenko et al., 1997a; Belichenko et al., 2004; Belichenko et al., 1994; Johansson and 

Belichenko, 2002). 

 

3.2.3 The single-cell genetic approach 

The use of retrovirus-mediated gene delivery, also known as the single-cell genetic 

approach, has made it possible to study the morphology and functional properties of newborn 

neurons throughout their lifetime (Gage, 2002; van Praag et al., 2002). Newborn neurons in the 

adult hippocampus have been used as a model to study neuronal development, because they 

recapitulate many features of embryonic hippocampal development (Song et al., 2005). When 

using the retroviral approach, newborn cells in the hippocampus are infected with retrovirus, 

causing them to express a live reporter, such as green fluorescent protein (GFP), throughout the 

cell, including the dendritic processes spines. This allows researchers to conduct a temporal 

analysis of the dendrite and spine development of newborn neurons by direct visualization of 

living newborn cells (Zhao et al., 2006). We used the single-cell genetic approach in an animal 

model of RTT to investigate the role of Mecp2 in developing neurons of the adult hippocampus 
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(Smrt et al., 2007). We found that four-week-old new neurons in adult Mecp2 knockout animals 

showed reduced dendritic spine density, a characteristic feature of immature neurons suggesting 

that newborn dentate granule neurons lacking Mecp2 have impaired maturation. Using a similar 

approach, we demonstrate that miR-137 overexpression inhibits dendritic morphogenesis (Smrt 

et al., 2010). These data are consistent with similar findings using other methods described in 

this section to study dendritic spines under pathological conditions and support the idea that 

abnormal dendrite and spine development is the common point of vulnerability leading to the 

neurological deficits in diseases associated with MR.  

 

3.3 Conclusions 

In first 3 chapters, I have discussed the role of epigenetics in dendritic and spine 

morphogenesis. Since Cajal’s epic contributions to neuroscience in the late 19th and early 20th 

centuries, contemporary science and advances in genetic and molecular tools have enabled 

researchers to look deeper into the underlying mechanisms of dendritic and synaptic 

development. The advent of epigenetic research has provided much new knowledge and also 

opened up more questions regarding the role of gene expression regulation in neurodevelopment. 

My focus as a researcher has been to use our arsenal of tools and knowledge of molecular 

biology and genetics to understand how dendrites and dendritic spines become grossly impaired 

in individuals faced with MR and neuropathology. 

Recent studies have shown that mutations in the epigenetic machinery lead to many 

forms of MR disorders. Synaptic plasticity, as well as learning and memory, are believed to 

depend on proper neuron-neuron communication, and identification of the genes involved in 

synaptic development is crucial to understanding these human disorders.  
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The important challenge for both scientists and clinicians is to identify the molecular 

basis for cognitive and behavioral symptoms in order to design adequate pharmacological 

treatments. A number of epigenetic-based therapeutic methods have been proposed as treatments 

for epigenetic-associated diseases. Many pharmacological agents have been discovered that alter 

methylation patterns on DNA and histones, many of which are being extensively tested in vitro 

and in clinical trials (Egger et al., 2004). However, epigenetic reagents, such as HDAC or DNA 

methylation inhibitors, have met with concerns about the specificity of the drug’s action. 

MicroRNAs have recently been identified as promising candidates for the treatment of diseases, 

such as heart disease and cancers. The challenge is to identify the specific miRNA(s) that could 

be considered treatment targets and to deliver that miRNA or miRNA inhibitor precisely to the 

target cells with high efficiency and without side effects. The next chapter will state the goal of 

my dissertation research and how I will explore the link between epigenetics, miRNA, and 

disease such as Rett Syndrome. 

Figure 3.1. Epigenetic regulation of biogenesis and functions of miRNA in the neuron. Transcription of miRNA, 
which can be regulated by epigenetic machinery, leads to the production of miRNA transcripts (pri-miRNAs), which are 
cleaved in the nucleus and exported into the cytoplasm as pre-miRNAs. The pre-miRNA is processed by the RNase 
Dicer and is likely associated with other accessory proteins, such as FMRP, to form an intermediate miRNA duplex. The 
leading strand of the miRNA duplex can then associate with the miRNA-induced silencing complex (miRISC), and then 
pair with sequences located on the 3’UTR of target mRNAs. This leads to translational repression of the target mRNA. 
This example illustrates the effect of miRNA-mediated translational repression of proteins important for  
dendritic spine function. 
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CHAPTER 4: 
Goal of my Thesis Dissertation 

 

The goal of this thesis is to determine how epigenetic factors influence the key 

characteristics of neuronal maturation in developing neurons. Despite the fact that several protein 

pathways have been identified as critical players in spine development and pathology, the 

molecular pathogenesis of aberrant spine morphology in epigentic diseases such as Rett 

syndrome has yet to be clearly and comprehensively elucidated. The scientific studies I 

conducted focus on how epigenetic mechanisms that are known to regulate gene expression, 

including DNA methylation, chromatin remodeling, and noncoding RNA-mediated processes 

may play a role in regulating the development and maturation of dendrites and spines.  

In Chapter 5, I investigated the role of MeCP2-mediated epigenetic regulation in 

neurogenesis and neuronal maturation of the hippocampus in postnatal brains (Smrt et al, 2007). 

Using the Mecp2-deficient mouse mutant, we found that MeCP2 was not critical for the 

production of immature neurons in the dentate gyrus (DG) of the hippocampus. However, the 

newly generated neurons exhibited pronounced deficits in neuronal maturation, including 

delayed transition into a more mature stage, altered expression of presynaptic proteins, and 

reduced dendritic spine density. Furthermore, analysis of gene expression profiles of isolated DG 

granule neurons revealed abnormal expression levels of a number of genes previously shown to 

be important for synaptogenesis. Our studies suggest that MeCP2 plays a central role in neuronal 

maturation, which might be mediated through epigenetic control of expression pathways that are 

instrumental in both dendritic development and synaptogenesis. The data collected in this study 

suggest that Mecp2 is not critical for the early stages of neurogenesis, but is important for 

neuronal maturation in the postnatal brain. 
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It has been shown that epigenetic factors such as MeCP2 have a profound effect on 

normal brain and dendritic development (Chahrour and Zoghbi, 2007); however, how epigenetic 

factors such as MeCP2 regulate brain development and neuronal maturation is unclear due to the 

challenges of identifying the downstream targets by classical gene expression analyses 

(Bienvenu and Chelly, 2006). Despite extensive effort to understand how MeCP2-deficiency 

leads to abnormal neuronal development, relatively few genes have been confirmed to be 

regulated by MeCP2, and the MeCP2-targeted gene(s) responsible for the pathogenesis of Rett 

syndrome have yet to be elucidated. To understand the function of MeCP2 in dendritic and 

dendritic spine development, I investigated non-coding miRNAs as the potential downstream 

effectors of MeCP2. In a paper I co-authored (Szulwach et al., 2010), we show that MeCP2 

epigenetically regulates a number of specific miRNAs in adult brain-derived neural stem cells 

(NSCs) under both proliferating and neuronal differentiating conditions. One of the miRNAs is 

miR-137. MeCP2 was found to bind directly to the genomic region proximal to miR-137, and 

absence of MeCP2 binding to this region correlated with an altered chromatin state and enriched 

miR-137 expression (Szulwach et al., 2010). This study suggests that the crosstalk between 

MeCP2-mediated epigenetic regulation of gene expression and miRNA pathways can function to 

modulate adult neurogenesis. In separate experiments done in the adult mouse brain and primary 

neurons, we show that miR-137 is significantly upregulated in the absence of MeCP2 

(APPENDIX A). Thus, because MeCP2 can alter expression of specific miRNAs, including 

miR-137, we proposed that altered expression of miRNAs may contribute to the dendrite and 

dendritic spine pathogenesis observed in Rett Syndrome.  

In Chapter 6, I demonstrate that miR-137 is a brain-enriched microRNA that has a 

significant role in regulating neuronal maturation in vivo and in vitro (Smrt et al, 2010). 
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Overexpression of miR-137 inhibited dendritic morphogenesis, phenotypic maturation, and spine 

development both in brain and cultured primary neurons. Similarly, a reduction in miR-137 had 

opposite effects. Our research group produced a luciferase construct containing the 3’UTR of 

Mib1, which I used to show that miR-137 targets the MIB1 protein through the conserved target 

site located in the 3’ untranslated region of Mib1 mRNA. Exogenously expressed MIB1 partially 

rescued the phenotypes associated with miR-137 overexpression suggesting that a novel 

miRNA-mediated mechanism involving miR-137 and MIB1 can function to regulate neuronal 

maturation and dendritic morphogenesis during development. I used the “single-cell genetic 

approach” in newborn neurons of the adult hippocampus and found reduced dendritic complexity 

and spine density; however, since the single-cell genetic approach specifically targets 

proliferating cells prior to neuronal differentiation, I also confirmed that overexpression of miR-

137 has the same effect on postmitotic cultured hippocampal neurons. Both overexpression and 

inhibition of miR-137 have significant but opposite effects on dendritic complexity. Therefore, 

my data indicate that proper expression of miR-137 is required for the normal dendritic 

development of hippocampal neurons.  

Chapter 7 expands the discussion of the previous chapters. In Chapter 7, I summarize the 

significance of my thesis research, address specific concerns and limitations regarding my 

research, define specific steps that I have taken to address many of those concerns, and propose 

additional experimental procedures that may function to strengthen my previous findings. 

Finally, I discuss potential future directions of this project based on my current findings. 

In summary, the results of my dissertation research demonstrate that epigenetic 

regulations, particularly those involving MeCP2 and epigenetically controlled noncoding 

microRNAs, are important modulators for normal development of neuronal dendrite and 
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dendritic spines. My data show how alterations in epigenetic and non-coding RNA-mediated 

processes may result in morphological and phenotypic abnormalities of neurons that are a 

fundamental characteristic for many forms of MR, such as fragile X, autism, and Rett syndrome. 
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5.1 ABSTRACT  

It is well known that Rett Syndrome, a severe postnatal childhood neurological disorder 

is mostly caused by mutations in the human MECP2 gene. However, how deficiencies in the 

MeCP2 protein contribute to the neurological dysfunction of Rett Syndrome is not clear. We 

aimed to resolve the role of MeCP2-mediated epigenetic regulation in postnatal brain 

development using a Mecp2-null mutant mouse model. We found that, while MeCP2 was not 

critical for the production of immature neurons in the dentate gyrus (DG) of the hippocampus, 

the newly generated neurons exhibited pronounced deficits in neuronal maturation, including 

delayed transition into a more mature stage, altered expression of presynaptic proteins, and 

reduced dendritic spine density. Furthermore, analysis of gene expression profiles of isolated DG 

granule neurons revealed abnormal expression levels of a number of genes previously shown to 

be important for synaptogenesis. Our studies suggest that MeCP2 plays a central role in neuronal 

maturation, which might be mediated through epigenetic control of expression pathways that are 

instrumental in both dendritic development and synaptogenesis.  
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5.2 Introduction  

Rett Syndrome (RTT) is a neurodevelopmental disorder that affects one of every 15,000 

female births. RTT patients develop normally until 6 to 18 months of age, but then regress 

rapidly experiencing a wide range of neurological defects, such as seizures, ataxia, and 

stereotypical hand movements. Individuals affected by RTT often survive into adulthood, and 

while some symptoms stabilize, others may worsen (Hagberg et al., 1983b; Hagberg and Witt-

Engerstrom, 1986; Kriaucionis and Bird, 2003). In most cases, RTT can be linked to loss-of-

function mutations in the X-linked human MECP2 gene (Amir et al., 1999), which encodes a 

methylated-CpG binding protein that recruits additional factors such as histone deacetylase to 

repress transcription (Bird, 2002a). Several lines of Mecp2 mutant mice (KO) have been 

generated and these mice develop similar symptoms to those seen in RTT patients and have been 

widely used to study the etiology of human RTT (Chen et al., 2001b; Guy et al., 2001; Pelka et 

al., 2006; Shahbazian et al., 2002a). Nevertheless, the neurodevelopmental pathways and specific 

genes targeted by the disruption of this epigenetic regulatory control have not been determined.  

Recent experimental evidence indicates that MeCP2 may play a vital role in neuronal 

maturation (Bienvenu and Chelly, 2006). A critical step in the process of neuronal maturation is 

synaptogenesis, which coincides with the increased expression of MeCP2 in developing neurons 

(Akbarian et al., 2001b; Zoghbi, 2003) (Shahbazian and Zoghbi, 2002a), suggesting that 

epigenetic modulation of gene regulation during this period might be critical for brain 

development. In fact, postmortem analysis has demonstrated reduced numbers of axonal and 

dendritic processes, decreased dendritic spine density, and lowered levels of the dendritic 

cytoskeletal protein MAP2 in RTT brains (Armstrong, 2002; Kaufmann and Moser, 2000b). 

Consistent with human pathology, pyramidal neurons in the cortex of adult Mecp2 null mutant 
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(KO) mice were found to have smaller soma and less complex dendrites, though the morphology 

and density of dendritic spines were not determined in this study (Kishi and Macklis, 2004). 

Exogenous MeCP2 expression could also lead to increased neurite complexity in cultured 

neurons (Jugloff et al., 2005), further suggest a role of MeCP2 in dendritic development. 

However, in another study, analyses of Golgi-stained cortical and subcortical neurons of Mecp2 

truncation mutant mice (Mecp2y/308) did not reveal significant abnormalities in either dendritic 

arbor or spine density (Moretti et al., 2006). The discrepancy between these results could be due 

to differences in either the model systems analyzed or the methods used. Abnormalities in 

dendritic spines have been found in several developmental disorders [reviewed by (Fiala et al., 

2002)]. Therefore it is critical to clarify whether Mecp2 mutations affect spine development by 

monitoring the maturation of single neurons in a well defined cell population in order to 

understand the function of MeCP2 in neural development and the etiology of RTT. 

Unlike most other brain regions, neurogenesis in the adult dentate gyrus (DG) persists 

throughout life. In adult mice, newborn DG neurons develop properties similar to mature granule 

neurons after approximately 4-8 weeks of differentiation. The properties of newborn neurons in 

the adult DG recapitulate embryonic hippocampal development (Song et al., 2005), providing a 

unique model system for studying the generation and maturation of neurons in postnatal brains 

(Gage, 2002). The hippocampus also provides a logical framework to study the pathogenesis of 

MeCP2 deficiency because the morphological maturation, functional properties, and molecular 

mechanisms of the hippocampus have been extensively characterized due to their potentially 

critical roles in learning and memory (Nicoll and Schmitz, 2005; Ziv and Garner, 2004), and 

because Mecp2 KO mice have been shown to have impaired long-term potentiation and 
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depression, impaired excitatory neurotransmission, and altered expression of neurotransmitter 

receptors in hippocampal neurons (Asaka et al., 2006; Moretti et al., 2006; Nelson et al., 2006). 

MeCP2 has been found to be expressed in neural stem cells (NSCs) (Jung et al., 2003; 

Namihira et al., 2004). While MeCP2 was shown to be involved in embryonic neurogenesis in 

Xenopus, studies have indicated that this is not the case in mice (Kishi and Macklis, 2004; 

Stancheva, 2003). Recent evidence has revealed that adult NSCs are different from embryonic 

NSCs in both the cellular environment they encounter and in their intrinsic genetic and 

epigenetic properties (Cheng et al., 2005; Zhao et al., 2003). Moreover, deletion of Mecp2-

related Methyl-CpG binding protein 1 (Mbd1) specifically affects postnatal, but not embryonic, 

neurogenesis (Zhao et al., 2003), suggesting that postnatal neurogenesis may be particularly 

vulnerable to altered epigenetic regulation. Therefore, analyzing postnatal neurogenesis in the 

absence of MeCP2 will provide critical information for understanding the function of this 

protein. 

In this study, we have determined that MeCP2 is not critical for the early stages of 

neurogenesis. In contrast, we show that immature neurons in the DG of KO mice exhibit deficits 

in their ability to transition into later mature stages of development. This deficit results in adult 

Mecp2 KO mice retaining characteristic features of immature brains, suggesting a stalled 

maturation. At a single neuronal level in the postnatal hippocampus, MeCP2-deficient neurons 

exhibited a reduced number of dendritic spines. By analyzing gene expression profiles of a 

homogeneous population of DG neurons isolated from KO brains, we have found that the 

expression levels of several genes encoding proteins that are likely to be involved in 

synaptogenesis were altered. Together, these data suggest that MeCP2 is critical for the 

maturation of young neurons, possibly through regulating synaptogenic factors. 
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5.3 Materials and Methods 

Animals: All animal procedures were performed according to protocols approved by the 

University of New Mexico Animal Care and Use Committee. The Mecp2 KO mice 

(Mecp2tm1.1Jae) used in this study were created by deleting exons 3 containing the MBD domain 

of Mecp2 (Chen et al., 2001b). These mice have been bred over 40 generations on to ICR 

background. They start to show neurological symptoms between 5 and 7 weeks of age and die 

before 10 weeks of age. For histological analyses, mice were euthanized by intraperitoneal 

injection of sodium pentobarbital. Mice were then perfused with saline followed by 4% PFA. 

Brains were dissected out, post-fixed overnight in 4% PFA, and then equilibrated in 30% 

sucrose. Forty-µm brain sections were generated using a sliding microtone and were stored in -

20oC freezer as floating sections in 96-well plates filled with cryoprotectant solution (glycerol, 

ethylene glycol, and 0.1M phosphate buffer, pH 7.4, 1:1:2 by volume).  

 

Statistical analyses: All statistical analyses were performed using unpaired, two-tailed, Student’s 

t-test and in all figures, the data bars and error bars indicate mean ± standard error (s.e.m). 

 

Isolation and in vitro analyses of adult NSCs: Isolation of adult NSCs was performed based on 

the published method (Zhao et al., 2003). Briefly, forebrains without olfactory bulb and 

cerebellum (4 mice/ genotype, age- and sex-matched) were dissociated mechanically followed by 

enzymatic digestion using PPD (2.5 U/ml papain, 1U/ml DNAseI, and 200 mg/100 ml Dispase 

II) in DMEM high glucose (Cellgro, Herndon, VA). After filtering through a 70-µm cell strainer 

(BD Falcon, San Jose, CA), a single cell suspension was loaded onto 50% percoll. The NSCs 

were separated from other cells by ultracentrifugation at 127 krpm for 30 min at 20oC using a 
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SW41 rotor (Beckman, Fullerton, CA). The fraction containing NSCs (immediately above the 

red blood cell layer in the gradient) was collected, washed with PBS, and plated in N2 medium 

(DMEM/F12 1:1 containing N2 supplement (Invitrogen, Carlsbad, CA) supplemented with 20 

ng/ml FGF-2 and 20 ng/ml EGF in a 5% CO2 incubator. Cell proliferation analyses were 

performed as described (Lie et al., 2005). Briefly, BrdU was added to the culture medium at 5 

µM for 16 hours, followed by fixation using 4% PFA. Cells were then stained with antibodies 

against BrdU (1:500, Accurate Chemicals, Westbury, NY) and Ki67 (1:1000, NovoCastra 

Laboratories, Newcastle upon Tyne, UK) and 10 µg/ml DAPI. The percentage of BrdU+ cells or 

Ki67+ over total DAPI+ cells indicates the percentage of cells that are proliferating. For in vitro 

differentiation analysis, cells were incubated in N2 media containing 1 µM forskolin, 1 µM all-

trans retinoic acid and 0.5% FBS for 7 days. Cells were then fixed by 4% PFA, followed by 

immunocytochemical analysis as described previously (Zhao et al., 2003). Primary antibodies 

used were: rabbit anti-type III β-tubulin (1:4000, Covance, Berkeley, CA), RIP (1:50, 

Hybridoma Bank, Iowa City, Iowa), s-100  (1:1000; Sigma-Aldrich, St Louis, MO), and all 

secondary antibodies (Jackson ImmunoResearch, West Grove, PA) were used in 1:250 dilution. 

Cell phenotypes were analyzed using an Olympus BX51 Research microscope equipped with 

epifluorescence, an optronics microfire digital color camera, and StereoInvestigator software 

(MicroBrightField). Cell counting was performed using an optical fractionator sampling design 

and formula (Gundersen et al., 1988). Four independent experiments (each had triplicates), using 

similar passages of cells, were performed for in vitro proliferation and differentiation assays. 

 

In vivo neurogenesis analyses: In vivo neurogenesis analyses were performed essentially as 

described previously (Zhao et al., 2003). Briefly, in 8-week-old mice (11 WT and 8 KO), BrdU 
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(50mg/kg) was injected daily for 7 consecutive days to increase the amount of labeling. In 4-

week-old mice (6 WT and 9 KO), BrdU was injected once daily for 4 consecutive days. Mice 

were then euthanized 1 day post-injection to assess proliferation (and early survival) of labeled 

cells. For cell survival analysis, mice injected at 4 weeks of age (6 WT and 9 KO, 1 injection/day 

for 4 days) were euthanized 4 weeks post-injection. For immunohistological analysis, 1-in-6 

serial floating brain sections (240 µm apart) were performed based on the published method 

(Zhao et al., 2003). The primary antibodies used were: rat-anti-BrdU (1:500; Accurate 

Chemicals), mouse anti-NeuN (1:5000; Chemicon International, Temecula, CA), rabbit anti-S-

100  (1:500; Sigma), and chicken anti-Mecp2 (1:5000, a generous gift from Dr. Janine LaSalle 

University of California, Davis). Fluorescent secondary antibodies were used at 1:250 dilutions 

(donkey, Jackson ImmunoResearch). After staining, sections were mounted, coverslipped, and 

maintained at 4oC in the dark until analysis. BrdU-positive cells in the granule layer were 

counted using unbiased stereology (StereoInvestigator, MicroBrightField) with a 5-µm guard 

zone as described elsewhere (Zhao et al., 2003). DG volume and cell density determinations 

were performed as described (Zhao et al., 2003). Phenotype analysis of BrdU+ cells was 

performed as described previously (Zhao et al., 2003). Briefly, 50 BrdU+ cells in the DG were 

randomly selected and their phenotypes (double labeling with either NeuN, S100β, or neither) 

were determined using a Zeiss LSM510 laser scanning confocal microscope. The data were 

analyzed using a Student’s t-test (Graphpad software, www.graphpad.com). 

 

Quantification of mature, immature, and “transitioning neurons” in the DG: This procedure was 

performed based on the published method (Brown et al., 2003). Briefly, 40-µm thick coronal 

tissue sections containing hippocampus were stained with antibodies against DCX (1:1000, goat, 
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Santa Cruz), NeuN, and DAPI. The immunofluorescence signals were captured using a spinning 

disk confocal microscope (Nikon Eclipse TE2000-U, 40x oil,1.2 NA). Quantification was done 

by a person who was blind to the genotypes of the mice. The numbers of NeuN-/Dcx+, 

NeuN+/DCX+, NeuN+/DCX-, and cells were quantified by examining z-stacks taken at 1-um 

intervals using MetaMorph imaging software (Molecular Devices Inc., Sunnyvale, CA). A total 

of 5 WT and 6 KO mice for the 4-week time point and 8 WT and 5 KO mice for the 8-week time 

point were used. Three z-stacks were taken from each animal and 6 image planes per optical 

stack were used for quantification. 

 

Immunohistological analyses and quantification of synaptophysin: Staining and analyses of 

synaptophysin immunoreactivity were performed according to published method (Li et al., 

2002). Briefly, 40-µm thick brain sections were incubated in primary antibody against 

synaptophysin (rabbit, 1:100; Zymed, San Francisco, CA), followed by biotinylated secondary 

antibody (donkey anti rabbit IgG; 1:250; Jackson ImmunoResearch), then incubated in ABC 

reagent (VECTASTAIN ABC Kit, Vector Laboratories) and detected by diaminobenzidine 

(DAB Substrate Kit, Vector Laboratories, Burlingame, CA). The sections were then thoroughly 

washed, mounted, air dried, and coverslipped with Permount (Biomedia Corp., Foster City, CA). 

Sections incubated with normal rabbit IgG instead of a primary antibody (Sigma-Aldrich) were 

used as negative controls. Optical density analysis of synaptophysin staining was performed by 

placing 10 circles in each region using Image-J software, as described elsewhere (Li et al., 2002). 

To categorize the clustered staining pattern, 63X (Zeiss Axioscope, NA = 1.4) images of brain 

sections were used. Images were captured at 1300 pixels x 1030 pixels using Slidebook software 

(Intelligent Imaging Innovations, Denver, CO). Using Image-J (NIH) image analysis software, a 
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threshold value was determined for positive staining and remained the same throughout the data 

analysis. Large clusters were determined to be clusters greater than 300 pixels2 and were 

quantified using the “Analyze Particles” function of Image-J. Sections with 0-5 “large clusters” 

in the molecular layer of the hippocampus were placed into category 1, and sections with greater 

than 5 “large clusters” were placed into category 2. The experimenter was blind to the genotypes 

of the sections. The number of large clusters in each category was counted for each genotype and 

age group and the data were used to create Figure 5.3e. 

 

Retroviral grafting. Production of CAG-eGFP retrovirus and in vivo grafting into the DG of 

mice were performed as described elsewhere (Zhao et al., 2006). Briefly, CAG-eGFP plasmid 

was co-transfected with packaging plasmids pCMV-gag-pol and pCMV-Vsvg into HEK293T 

cells and the medium containing virus was collected, filtered, and concentrated using 

ultracentrifugation. For in vivo grafting, 4-week-old mice were anesthetized with isofluorane and 

virus (1.5 μl with titer greater than 5X105/µl) was injected stereotaxically into the DG using the 

following coordinates relative to bregma: anteroposterior, -(1/2) x d mm; lateral, -1.8 mm (if d > 

1.6) or -1.7 mm; ventral, -1.9 mm (from dura). Four weeks after injection, mice were deeply 

anesthetized with pentobarbital and perfused with saline followed by 4% PFA.  

 

Immunohistochemistry and dendritic spine density analyses: 1-in-3 floating brain sections 

containing eGFP+ cells (120 µm apart, approximately 8 brain sections) were used for 

immunohistological staining using a protocol described elsewhere (Zhao et al., 2003). The 

primary antibody used was rabbit anti-GFP (Invitrogen, Eugene, OR). Briefly, for spine 

quantification, a minimum of 12-15 images of dendritic fragments were taken at 25-100 μm from 
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the cell body of each eGFP+ neuron using a confocal microscope with an oil immersion objective 

(100x; NA = 1.3; Zeiss). Z-stacks at 1 µm intervals were taken and merged for a maximum 

intensity projection. For quantification of dendritic spines, protrusions were counted along 10 μm 

long dendrite segments measured using Image-J software (NIH Image). The “dendritic spine 

density” result was calculated as number of spines per 10 μm length of dendrite. A minimum of 

40 dendritic fragments (10-μm each) from a minimum of 4 eGFP+ neurons were quantified from 

each animal. At least 3 animals from each genotype were analyzed and the final results were 

compared using a Student’s t-test. The apposition of immunostained presynaptic boutons with 

eGFP-expressing postsynaptic spines was determined according to a published method 

(Belichenko et al., 2004). Briefly, the presynaptic terminal (synaptophysin+) and postsynaptic 

spine (eGFP+) were defined as apposed when there was an overlap between pre- and 

postsynaptic elements, or when these elements were separated by no more than one pixel (0.1 

µm).  

 

Laser Capture Microdissection (LCM) and gene expression analyses: LCM, amplification by in 

vitro transcription, and probe labeling were performed using a highly reproducible protocol that 

has been adapted and optimized to analyze gene expression profiles using as little as 5ng total 

RNA (Phillips and Eberwine, 1996) (Dr. FH Gage, unpublished). Briefly, 4 KO and 4 WT mice 

(8 weeks of age) were used. Brains were rapidly removed from the cranium and flash-frozen in 

OCT mounting medium (TissueTek, Sakura Finetek, Torrance, CA) in a dry ice-isopentane 

slurry and stored at –80oC. The day before LCM, 12 µm sections of brain were generated, 

stained with cresyl violate, and dehydrated. The granule cell layers of DG were captured using 

an Arcturus PixCelII LCM microscope (Arcturus Bioscience Inc., Mountain View, CA). An 
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example is shown in Figure 5.5. LCM was performed at a power level between 25 and 45 mV, 

between 2 and 20 ms duration, and at a median spot size setting. A minimum of 30 brain sections 

(less than half of the sections generated from each brain) were used to capture sufficient DG 

neurons for this study. Captured tissue was dissolved in cell lysis buffer in the MicroRNA kit 

(Stratagene, San Diego, CA) for 2 to 5 minutes immediately after capturing. Total RNA was 

isolated from cell lysate using a MicroRNA kit (Stratagene), and approximately 20 ng total RNA 

was obtained. Half of the sample was used to quantify RNA using a Ribo Green kit (Invitrogen). 

Finally, 10 ng total RNA was amplified using 3 rounds of a MessageAmep kit (Ambion, Austin, 

TX). During the last round, RNA was labeled with biotin (Enzo kit, Affymetrix, Santa Clara, 

CA), purified, and quantified. Biotin-labeled cRNA (30 µg) was fragmented and hybridized to 

Affymetrix U430 arrays (Affymetrix). Analysis of microarray data was performed using three 

distinct software programs as described in our previous publication (Barkho et al., 2006). 

Briefly, the data were pre-processed using the Affymetrix Microarray Analysis Suite (MAS) 5.0 

and subsequently analyzed using dChip (Li and Wong, 2001), Drop Method (Aimone and Gage, 

2004), and the algorithms of RMA (Irizarry et al., 2003; Tusher et al., 2001). The combination of 

these methods has been shown to reduce both false positives and false negatives (Aimone et al., 

2004; Barkho et al., 2006). Specifically, for dChip, we selected genes that passed with 90% 

confidence and had a fold change greater than 1.2. For the Drop method (the PM-only, and PM-

MM are considered as one method), we selected genes that passed with a confidence of 70%. For 

RMA, a fold change had to meet the criteria of being greater than 1.2 and have a false discovery 

rate (FDR) less than 30%. The FDR value used for RMA was based on the Significance for 

Analysis of Microarrays software (SAM) (Tusher et al., 2001). Only genes identified by all three 

software programs were included as differentially expressed genes and are listed in Table 5.1. 
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Real time quantitative PCR: Real time quantitative PCR was performed as described (Barkho et 

al., 2006; Zhao et al., 2001). Briefly, the cDNA was synthesized using MessageAmep kit, 

(Ambion) for LCM samples. PCR primers were designed using PrimerExpress software (Applied 

Biosystems, Foster City, CA) and ordered from IDT Inc. (CA). The primer sets were first 

evaluated by standard PCR to determine that single PCR products of the predicted size were 

generated. A typical Real Time PCR reaction mix contained 1X SYBR Green Master Mix 

(Applied Biosystems), 100 nM of each oligonucleotide primer and 10 ng cDNA in a total volume 

of 25µl. The reaction was carried out in an ABI 7700 System (Applied Biosystems). Each 

condition was acquired in at least triplicate, and data analysis was performed according to the 

protocol provided by Applied Biosystems. Standard curves were generated using a pre-made 

pool of mouse brain and spinal cord total RNA. The amount of mRNA for tested genes was 

calculated according to the standard curve for that particular primer set. Finally, the relative 

amount of the tested message was normalized to the level of an internal control message, 

hypoxanthine phosphoribosyl transferase (HPRT). 

 

5.4 RESULTS 

 

5.4.1 Early postnatal neurogenesis appears normal in MeCP2-deficient mice 

We have previously found that mice deficient for Mbd1, a MeCP2-related protein, exhibited 

reduced adult hippocampal neurogenesis both in vivo and in vitro (Zhao et al., 2003). Because 

RTT manifests at 6-18 months of age in patients, well after primary neurogenesis, we asked 
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whether a lack of functional MeCP2 causes deficits in postnatal neurogenesis that might be 

linked to neurological symptoms comparable to those seen in RTT patients. We compared neural 

stem/progenitor cells (NSCs) isolated from 6-week-old male KO and wild type (WT) mice. At 

this age, the majority of KO mice have developed characteristic neurological signs of disease as 

previously reported (Chen et al., 2001b; Guy et al., 2001). Using bromodeoxyuridine (BrdU) 

incorporation as a measure of proliferation index, we found that KO NSCs proliferated at a rate 

that was indistinguishable from WT control cells (Fig 1A and 1B, p=0.41). Moreover, KO and 

WT cultured NSCs also differentiated into similar numbers of neurons (Fig 5.1C and 1D, 

p=0.43) and astrocytes (data not shown), indicating that there was no marked impairment in the 

proliferation or differentiation potential of MeCP2-deficient NSCs in culture.  
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Figure 5.1. Mecp2 KO mice exhibit a normal early stage of postnatal neurogenesis even though immature 
neurons have an abnormal morphology. (A) For cell proliferation analyses, NSCs isolated from 6-week-old 
KO and WT brains were cultured in the presence of BrdU to label dividing cells. BrdU-labeled cells were 
detected by immunocytochemistry (red, BrdU; blue: DAPI nuclear staining; scale bar=10 µm). (B) Quantitative 
analyses of BrdU-labeled cells indicated no significant difference in cell proliferation between KO and WT NSCs 
in vitro (p=0.41, n=3, t-test). (C) Mecp2 KO NSCs can differentiate into neurons (TuJI+, red) and astrocytes 
(S100b+, green) (blue: DAPI nuclear staining); scale bar=10 µm. (D) There was no significant difference in 
neuronal differentiation between KO and WT NSCs in vitro (p=0.43, n=3 t-test). (E) Example of a brain section 
stained with antibodies to NeuN (green) and BrdU (red) for in vivo neurogenesis analyses. Neither 4-week-old 
(F) nor 8-week-old (G) KO mice exhibited significant deficits in the number of BrdU+ cells at either 1 day post-
BrdU injection (F and G) or 4 weeks post-BrdU injection (H). At 4 weeks post-labeling, BrdU+ KO cells 
differentiated into similar numbers of new neurons (I) compared to WT mice. Low magnification (J-M, scale 
bar=100 µm) and high magnification (N-S, scale bar=10 µm) images of DG stained with antibodies against 
Mecp2 (red nuclear staining) and DCX (green). Note that Mecp2 staining is absent in KO brains (L, M, Q-S). (N-
S) DCX+ immature neurons in KO brains have disorganized morphologies compared to those in WT brains 
(arrowhead in P), with abnormal orientation of the processes of many DCX+ neurons (arrowhead in S). The 
dotted lines in N-S indicate the boundary of the granule cell layer. m, molecular layer, g, granule cell layer, and 
h, hilar region. 
 

To examine postnatal neurogenesis in vivo, we assessed proliferation, survival, and 

differentiation of NSCs in the hippocampus of young mice. In the rodent hippocampus, granule 

cells of the DG develop postnatally, becoming morphologically mature at about 4 weeks of age, 

which corresponds roughly to the second year in humans (Seress et al., 2001; Seress and 

Mrzljak, 1992), when RTT symptoms first become apparent. Newborn cells were distinguished 

by incorporation of BrdU administered through intraperitoneal injections into either 4 week-old 

juvenile or 8-week-old young adult mice. Quantitative histological analysis at one day after the 

last BrdU injection showed no difference between KO and WT mice either at 4 or 8 weeks of age 

(Fig 5.1E-G). This finding suggested that, as found in cultured NSCs, the NSCs in KO mice 

proliferate normally in the DG of developing and mature mice. In a separate group of mice, long-

term survival and differentiation of BrdU-labeled cells were examined by analyzing labeled cells 

4 weeks after BrdU injections. We found that the numbers of BrdU-labeled cells that survived 

from 4 weeks to 8 weeks were also similar in both KO and WT mice (Fig 5.1H, p=0.13). 

Moreover, the percentage of BrdU-labeled cells co-labeled for either the neuronal marker NeuN 

(Fig 5.1I) or astrocyte marker GFAP (data not shown) did not differ significantly between KO 
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and WT mice. Furthermore, neither the cell density nor the volume of the DG of KO mice was 

significantly different from WT mice (data not shown). Finally, to investigate whether there was 

a difference in the population of transient migrating neuroblasts or immature neurons, we 

quantified the number of cells stained with doublecortin (DCX), a microtubule associated protein 

(Brown et al., 2003) Francis et al., 1999; Gleeson et al., 1999; Magavi et al., 2000). Again, we 

found no difference between the number of DCX-positive cells in the DG of KO and WT mice 

(Fig 5.1J-S). Taken together, these in vitro and in vivo results strongly suggest that the lack of 

MeCP2 does not impair the proliferation, survival, or differentiation of neural progenitors during 

this early stage of postnatal hippocampal neurogenesis. 

 

5.4.2 Impaired maturation of MeCP2-deficient neurons  

Despite the overall similar numbers of immature neurons in the DG of KO and WT mice, 

we noticed clear abnormalities in the neurite outgrowth from MeCP2-deficient immature neurons 

(Fig 5.1R and S). In the DG of WT mice, the cell bodies of the DCX+ neurons were typically 

located in the subgranular zone (SGZ) of the DG adjacent to the hilar region, with their processes 

perpendicularly extended through the granule cell layer (GCL) and exited into the opposite 

molecular layer (Fig 5.1N-P, arrowhead) (Brown et al., 2003; Rao et al., 2005; Rao and Shetty, 

2004). In contrast, the processes of most DCX+ neurons in the DG of Mecp2 KO mice were 

found to traverse nearly parallel along the hilar boundary of the DG (Fig 5.1Q-S, arrowhead). 

This morphological difference might reflect impaired maturation because since horizontal and 

short processes are characteristic features for new neurons at early stage of differentiation 

(Esposito et al., 2005; Ge et al., 2006; Zhao et al., 2006). Because the majority of the DG granule 

neurons are generated during postnatal development, we exploited the possibility that this deficit 
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was widespread in the developing DG. We therefore compared the ratio of NeuN+ mature and 

DCX+ immature neurons in the DG of Mecp2 KO and WT mice at two different ages: when the 

DG had just past the peak of primary cell genesis (4 weeks of age) and when DG had reached the 

adult level of maturity (8 weeks of age) (Fig 5.2A-G) (Mullen et al., 1992). Furthermore, we 

quantified the number of cells positive for both NeuN and DCX to distinguish the cells that were 

transitioning from an immature to a mature phenotype and to provide an additional index of this 

developmental maturation process (Fig 5.2E-G).  
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Figure 5.2. Immature neurons in the DG of Mecp2 KO mice have delayed transitioning to mature stage. 
(A-D) Confocal images showing DG of the hippocampus labeled with antibodies against NeuN (A, green, 
mature neurons), DCX (B, red, immature neurons), and DAPI (C, blue, nuclear dye). Scale bars=100 µm. (D) 
Merged image of A-C. (E-G) Higher magnification images of granule neurons and examples of neurons that are 
NeuN+DCX- (asterisk) and NeuN+DCX+ (arrowhead). Scale bars=10 µm. (H) Quantitative analyses indicate the 
percentage of mature neurons (NeuN+DCX-, white bar), immature neurons (DCX+NeuN-, light gray) and 
“transitioning neurons” (NeuN+DCX+, dark gray) in 4-week-old and 8-week-old mice. (I) Age-dependent 
changes in the proportion of “transitioning neurons” over total neurons are significantly different between KO 
and WT mice (p<0.0001), (J) The percentage of “transitioning neurons” among total DCX+ neurons are also 
significantly different between WT and KO mice at both 4 and 8-weeks-old. While WT mice exhibited an age-
dependent decrease in the proportion of “transitioning neurons” over total DCX+ neurons, KO mice displayed 
an increase (p<0.0001), suggesting more neurons are stalled at the transitioning stage in the KO brains.  
 

 

Quantitative analysis of confocal images was used to determine the percentage of neurons in 

each maturation stage (Fig 5.2A-G, DCX+/NeuN-; DCX+/NeuN+; DCX-/NeuN+) in both the KO 

and WT DG. The results summarized in Figure 5.2H show that whereas neither 4- nor 8-week-

old Mecp2 KO mice displayed significant differences in the percentage of mature or immature 

neurons compared to WT mice, the DG of 8-week-old Mecp2 KO mice had a significantly higher 

percentage of “transitioning neurons” (p<0.001). In fact, comparison of the number of 

“transitioning neurons” (DCX+/NeuN+) among total neurons showed that maturation from 

juvenile (4 weeks) to young adult (8 weeks) was accompanied by a 75 % decrease in the 

percentage of “transitioning neurons” in normal WT brain but only a 44% reduction in the KO 

brains (Fig 5.2I, p<0.0001). In addition, comparison of the number of “transitioning neurons” 

(DCX+/NeuN+) and total immature neurons (both DCX+/NeuN- and DCX+/NeuN+) showed that 

maturation from a juvenile (4 weeks) stage to a young adult (8 weeks) stage was accompanied, in 

the normal WT brain, by a 28.5% decrease in the percentage of “transitioning neurons” among 

the total population of DCX+ neurons (Fig 5.2J). However, the age-dependent reduction of this 

subpopulation of double positive “transitioning neurons” among total immature neurons did not 

occur in MeCP2-deficient mutants; but rather there was a 26.9% increase in the percentage of 

these neurons during this developmental time period (Fig 5.2J, p<0.0001). This finding may 
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indicate that the deficiency in MeCP2 may have led to DCX+/NeuN+ double positive 

“transitioning neurons” being held up and failing to differentiate into more mature DCX-/NeuN+ 

neurons.  

 

5.4.3 Impaired expression of developmentally regulated presynaptic proteins 

in MeCP2-deficient hippocampus 

Because synaptogenesis is a crucial step for the maturation and integration of newborn 

neurons into the preexisting circuitry of the hippocampus, we investigated whether KO mice 

have deficits in synapse formation. For this purpose, we used an antibody against synaptophysin, 

a synaptic vesicle protein whose expression is known to reflect the distribution and density of 

presynaptic terminals (Li et al., 2002). We focused on the molecular layer of the hippocampus, 

where DG granule neuron dendrites receive input from perforant path axons from the entorhinal 

cortex (Henze et al., 2000). Overall, no consistent difference was found in optical density 

measurements of synaptophysin immunostaining between 4- and 8-week-old WT and KO mice 

suggesting that the level of expression, and thus the number of nerve terminals, was not affected 

by the lack of MeCP2. However, we did observe two patterns of synaptophysin 

immunoreactivity in both WT and KO mice: highly distributed small positive spots (<300 

pixels2, Fig 5.3C, arrowheads), and “large clusters” (>300 pixels2, Fig 5.3C and 3D, arrows) that 

appeared to vary in density in different brain regions. To quantify the distribution of these large 

clusters and determine whether they might differentiate between the synaptic density of WT and 

KO hippocampus, we analyzed the number of “large clusters” (determined by Image-J 

quantitative software) found in the molecular layer, where dendrites of granule neurons form 

synapses. We found no significant difference in the number of large clusters in either 4-week-old 
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Figure 5.3. Mecp2 KO mice have altered presynaptic protein expression pattern. (A-C) Digitized bright-
field micrographs show synaptophysin immunoreactivity in the adult and young mice. Scale bar=100 µm. (A) 
The box indicates the region that is enlarged in C and D. (B) Sections were incubated with normal rabbit IgG, 
instead of synaptophysin antibody, as a negative control. (C) Example of a brain section with small 
synaptophysin positive spots (arrowheads) and two large clusters (arrows). scale bar=10 µm. (D) The output of 
particle analysis of (C) produced by Image-J showing the two large clusters (arrows). (E) Number of large 
clusters in 4- and 8-week-old WT mice (**P < 0.01) compared to 4- and 8-week-old KO mice. Note that WT 
animals showed a clear age-dependent reduction in the density of large synapse clusters, whereas KO failed to 
show this developmental change. 
 

or 8-week-old KO mice compared to their age-matched WT littermates (Fig 5.3E). However, 

when WT mice mature from 4 to 8 week of age, there was an 82.6% decrease in the number of 

large synaptic clusters in the molecular layer of the hippocampus (4-week, 18.29 ± 4.74, n = 14 

mice; 8-week, 3.19 ± 1.10, n = 13 mice; P < 0.01), but such an age-dependent change was absent 

in KO mice (P = 0.48), suggesting a failure in dispersing these large clusters into a more uniform 

distribution of presynaptic terminals in the absence of functional MeCP2.  
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5.4.4 Altered dendritic spine distribution in MeCP2-deficient mutant neurons 

As neurons mature the density of dendritic spines increases (Ge et al., 2006; Zhao et al., 

2006). Consequently, reduced dendritic density is a common characteristic of the abnormal 

synaptic development seen in a variety of neurological disorders (Fiala et al., 2002). To clarify 

the current discrepancy in the literature and determine whether Mecp2 mutations affect dendritic 

spine development, we decided to analyze the morphology of individual MeCP2-deficient 

neurons in vivo. Because the persistent, albeit low level, of postnatal neurogenesis in the DG 

allowed us to trace the maturation of single new neurons, we performed detailed morphological 

analyses to investigate the maturation of these newly generated neurons in the MeCP2-deficient 

mice. Recombinant retroviruses, which are only capable of infecting dividing cells, have been 

previously used to label and follow the differentiation of NSCs in postnatal DG (Ge et al., 2006; 

van Praag et al., 2002; Zhao et al., 2006). We therefore injected recombinant retrovirus 

expressing enhanced green fluorescence protein (eGFP) under a chicken actin promoter (CAG-

eGFP) (Zhao et al., 2006) into 4-week-old KO and WT mice and analyzed the morphology of 

new neurons after 4 weeks, a time when labeled new neurons would be expected to develop the 

dendritic morphology of fully mature neurons (Ge et al., 2006; van Praag et al., 2002; Zhao et 

al., 2006) (Fig 5.4A). As shown in Figure 5.4B-E, whereas most of the eGFP+ neurons expressed 

the mature neuronal marker NeuN, a few of them also expressed DCX, indicating NSCs that had 

not yet reached a fully matured state. To quantify the density of synapses, we counted the 

number of spines within each 10-μm segment of dendrites imaged by high-resolution confocal 

microscopy. Quantitative analyses indicated that the spine density of eGFP+ neurons in the DG 

of Mecp2 KO mice was significantly reduced compared to WT mice (Fig 5.4J, WT= 13.46 ± 

0.31, KO= 11.41 ± 0.11; P < 0.005).  
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Figure 5.4. Newly matured neurons in Mecp2 KO hippocampus have reduced dendritic spine density and 
abnormal distribution. (A) Schematic diagram demonstrating stereotaxic grafting of CAG-eGFP retrovirus into 
the DG of 4-week-old KO and WT mice to label dividing neuroprogenitors in the germinal zone of the DG. At 4 
weeks post grafting, many eGFP+ cells had differentiated into NeuN+ (B, C, D, arrowheads) and/or DCX+ (E) 
new neurons. (F, G) High resolution image of dendrites of eGFP+ neurons were used to quantify the density of 
dendritic spines (number of spines/10 µm dendrites) to generate the data in (H-J). (G) High magnification view 
of the box in F. Scale bars in F and G=10 µm. (J) New neurons in KO brains had reduced dendritic spine density 
(P<0.005, n=3 t-test). (H, I) Frequency distribution data indicate higher variation in spine density in KO mice (I) 
than in WT mice (H), indicating an uneven distribution of spine density. (K) Z-stack confocal image showing 
apposition of presynaptic terminal marker synaptophysin (red, arrow) with eGFP+ spines of new neurons. (L) 
Quantitative analyses indicating that similar percentages of eGFP+ spines were apposed to presynaptic terminals 
in both WT and Mecp2 KO mice (p=0.33, n=3, t-test) 
 

Because the formation of functional synapses requires apposition of presynaptic terminals and 

postsynaptic spines, we asked whether the postsynaptic spines of eGFP+ neurons in the DG of 

KO mice were adjacent to synaptophysin-positive presynaptic terminals. As shown in Figure 

5.4K and L, similar percentages of eGFP+ spines in WT and Mecp2 KO mice were apposed to 

synaptophysin–positive presynaptic terminals. These data indicate that, at the single neuron 

level, while newly matured neurons in MeCP2-deficient mice are able to form synaptic contacts, 

the number of these synapses is greatly diminished.  

 

5.4.5 Altered gene expression of synaptic proteins in MeCP2-deficient DG 

granule neurons 

To investigate the molecular mechanisms that might underlie the deficits in dendritic 

spine development in the DG of MeCP2-deficient mice, we investigated differential gene 

expression in the granule cells of the DG isolated by LCM from 8-week-old Mecp2 KO and WT 

mice (Fig 5.5A-C). Relative levels of gene expression were determined by hybridization to 

mouse U430 gene array (Affymetrix) and the data were analyzed using three independent 

software packages based on distinct algorithms (see Materials and Methods). This bioinformatic 

strategy of using a combination of different analyses reduces the selection of both false positives 

and negatives as candidate genes (Barkho et al., 2006). Only genes that were identified by all 
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three algorithms, as differentially expressed genes, were listed in Table 5.1. We found that the 

expression of 13 genes was significantly changed in the Mecp2 KO DG granule neurons 

compared to WT controls. Consistent with the function of MeCP2 as a transcription repressor, 12 

of the 13 differentially expressed genes displayed increased expression in the KO neurons. The 

Mecp2 gene was not on the list because a truncated mRNA corresponding to the 3’ coding region 

of Mecp2, where Affymetrix probe sets hybridize, was expressed in KO neurons. Among the 

identified differentially expressed genes, Prefoldin 5 is involved in actin and tubulin folding and 

cytoskeleton formation (Hartl and Hayer-Hartl, 2002; Nolasco et al., 2005), and Syndecan 2 has 

been shown to be critical for synaptogenesis (Ethell et al., 2001; Ethell and Yamaguchi, 1999). 

We have confirmed that the expression levels of both Syndecan 2 and Prefoldin 5 mRNA were 

higher in KO neurons using Real time PCR analyses (Fig 5.5D-E). Alteration of either of these 

proteins could potentially affect dendritic development and neuronal morphology.  
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Figure 5.5. Gene expression analyses of LCM-isolated DG neurons indicate altered expression of genes 
related to synaptogenesis. (A-C) Bright field images demonstrate the process of isolating DG granule neurons 
from cresyl violet-stained brain sections using LCM. (C) Isolated neurons (dark) were melted into the cap during 
the LCM procedure and used for RNA isolation. (D-E) Real time PCR analyses confirmed the differential 
expression of two of the candidate genes, Syndecan 2 and Prefoldin 5. The fold changes determined by real time 
PCR are consistent with those determined by microarray analyses (p<0.05; n=3 experiments with 4 
mice/genotype).  

 

5.5 Discussion  

 

With the identification of MECP2 as the gene responsible for RTT, it becomes critically 

important to understand the role of MeCP2 in postnatal neural development. In this study, we 

provide strong evidence that while the lack of MeCP2 does not affect the production of NSCs, it 

does significantly impair subsequent steps in the maturation of neurons. First, we determined that 

the expression of specific markers defining the transition from immature to mature neurons was 

delayed in MeCP2-deficient NSCs. Second, we showed that the age-dependent shift in the 

expression pattern of synaptophysin in the molecular layer of the hippocampus did not occur in 

Mecp2 KO brains. Third, using single neuronal labeling, we found that there were striking 

defects in the development of dendritic spines and synaptogenesis in DG of KO mice. Finally, 

the expression levels of several genes that are likely to be important for synaptogenesis, such as 

Prefoldin 5 and Syndecan 2, were found to be significantly altered in the DG of the hippocampus 

in Mecp2 KO mice. This finding points toward a potential mechanism for the epigenetic effects 

mediated by ablating MeCP2 control of gene expression.  

The important role of MeCP2 as an epigenetic regulator at later stages of neural 

differentiation, in contrast to that reported for Xenopus (Kishi and Macklis, 2004; Stancheva, 

2003), is consistent with the normal development of the brain until birth both for RTT patients 
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and Mecp2 KO mice. While our results demonstrate clearly that the initial generation of new 

neurons in the DG was not altered, later steps in synapse formation were significantly perturbed. 

Although further efforts to examine the effects on early stages of neurogenesis in the SVZ could 

be useful, our studies, together with those of Kishi and Macklis (Kishi and Macklis, 2004), 

strongly support the view that MeCP2 is not critical for the production of new, immature neurons 

in either the embryonic or postnatal mammalian brains.  

The progressive acquisition of protein markers followed by the loss of their expression 

provides a well-defined system to measure the development and differentiation of newborn 

neural progenitor cells. During normal development, DCX is expressed transiently in immature 

neurons, and co-expression of DCX and NeuN (DCX+NeuN+) marks the end of the early 

immature neuronal stage. Subsequently, the expression of NeuN, but not DCX, is the hallmark of 

matured DG neurons (Brown et al., 2003). It seems likely that the age-dependent decrease in the 

DCX+NeuN- immature population and increase in DCX-NeuN+ mature population that we 

observed in both control WT and Mecp2 KO mice are due to both the decrease in cell 

proliferation and the increase in total number of granule neurons that occurs from 4 to 8 weeks of 

age. DCX+NeuN+ “transitioning neurons” can be detected as early as 12 days post-differentiation 

in the DG, and reach their highest level about three days later (Brown et al., 2003). The lower 

percentage of “transitioning neurons” observed in 4-week-old Mecp2 KO mice compared to WT 

mice could result from delayed maturation of DCX+NeuN- immature neurons into the 

“transitioning neuron” stage. The WT adult DG had a lower percentage of “transitioning 

neurons” than young mice, indicating that the DG is more mature; however, this reduction is 

much attenuated in adult KO mice, suggesting that more immature neurons either become 

“stuck” or stay longer in the “transitioning neuron” stage and thus their transition into a mature 
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stage is delayed. This hypothesis is consistent with previous reports indicating a greater 

percentage of immature neurons in the olfactory epithelium of Mecp2 KO mice (Matarazzo et al., 

2004), and with histone H3 lysine-9 acetylation and methylation patterns seen in MeCP2-

deficient RTT human brains that correspond to an arrest at the transitioning stage of neuronal 

maturation (Kawasaki et al., 2005). Future studies will be needed to define how MeCP2 

regulates the expression of genes critical for this transitioning stage.  

Synaptophysin staining has been widely used to indicate the numbers and distribution of 

neuronal synapses in mammalian brains (Li et al., 2002). However, while most studies have 

focused on determining the level of expression, we observed two distinct staining patterns (small 

positive spots and large clusters) in the developing mouse brain. These synaptophysin patterns 

change in a regulated manner in WT mice, with young brains exhibiting more large clusters than 

adult brain. The presence of large clusters could, therefore, correlate with immature stages of 

neuronal plasticity, when synaptophysin may not be well distributed to synaptic sites. If this is 

the case, the persistence of clustered synaptophysin staining in adult Mecp2 KO mice would be 

consistent with the notion that newborn neurons are “stalled” from further maturation in the 

absence of MeCP2. This stalling might be due to deficits in the neuronal transport mechanism or 

abnormalities in cytoskeleton structure in the absence of functional MeCP2 protein. In fact, we 

have found that the expression levels of several cytoskeleton-related factors are altered in Mecp2 

mutant DG neurons (Table 5.1). Interestingly, we also observed that clustered synaptophysin 

staining was retained in the stratum lucidum of the hippocampus, which contains the terminals of 

CA3 neurons (data not shown). Further analyses of other brain regions should shed light on 

whether the lack of MeCP2 as an epigenetic factor leads to a general impairment of synaptic 
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development, as reflected by synaptophysin staining, and results in global deficits in neuronal 

maturation throughout the brain.  

Dendritic spine density is a morphological indicator of neuronal maturation in 

hippocampal granule cells, and reduced spine density is correlated with impaired maturation of 

DG neurons (Zhao et al., 2006). Abnormalities in the morphology and density of dendritic spines 

have been found both in RTT patients and other neural developmental disorders, such as Down’s 

syndrome, Fragile X syndrome, and Autism (Fiala et al., 2002), however whether Mecp2 

mutations affect dendritic development in animal models is currently not clear. To clarify the 

current controversy between human and mouse studies (Belichenko et al., 1997b; Kishi and 

Macklis, 2004; Moretti et al., 2006), we used a retrovirus to mark single newborn neurons on the 

DG. Our findings of the reduced dendritic spine density in newly generated neurons in the DG 

are thus consistent with similar findings in human pathologies, suggesting that this abnormal 

dendritic development may be a common point of vulnerability that leads to the neurological 

deficits caused by these genetic disorders. Further experiments analyzing the dendritic 

morphology of eGFP+ neurons at earlier time points will help to define how MeCP2 regulates the 

development of dendritic spines. The apposition of postsynaptic and presynaptic terminal 

components is a prerequisite for a functional synapse. Although we did not observe a significant 

difference in the percentage eGFP+ spines apposed to presynaptic terminals distinguished by 

synaptophysin, the evaluation of impairments in the number of functional synapses and potential 

abnormalities in synaptic transmission will require future electrophysiological analyses. 

Remarkably, the altered morphology seen in DCX+ immature neurons, including abnormal 

orientation of the processes (Fig. 5.1), was not found in GFP+ new neurons at 4-week post-

labeling. This phenomenon might be due to the preferential death of morphologically altered 
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immature neurons or, alternatively, the abnormal orientation might correspond to a characteristic 

of an immature stage of neuronal maturation within the first week of differentiation. New 

neurons display horizontal processes, or short processes similar to those seen in Mecp2 KO 

brains and develop vertical processes during later stages of development (Esposito et al., 2005; 

Ge et al., 2006; Zhao et al., 2006). Further analyses of viral-labeled cells at early stages of 

neuronal differentiation will confirm this hypothesis. 

 Despite extensive effort, only a few genes, including Brain-Derived Neurotrophic 

Factor (Chen et al., 2003b; Martinowich et al., 2003), DLX5 and 6 (Horike et al., 2005), and 

inhibitor of differentiation (ID1, 2, 3, and 4) genes (Peddada et al., 2006) have been shown to be 

regulated by MeCP2. Therefore, the identification of additional genes that are either directly or 

indirectly regulated by MeCP2 in neurons is a critical step forward in delineating what role this 

epigenetic regulator of gene expression plays in the development of the brain, as well as other 

tissues. Several of the candidate genes we identified are involved in cytoskeleton structure 

formation, such as Prefoldin 5, Arpc3, Syndecan 2, etc (Table 5.1). Prefoldin 5 is involved in 

actin and tubulin folding. Mutations of prefoldins result in an abnormal cytoskeleton (Hartl and 

Hayer-Hartl, 2002). Syndecan 2 is a transmembrane heparin sulfate proteoglycoprotein that 

binds extracellular matrix components and growth factors and is expressed at the mature 

dendritic spines of hippocampal neurons. Like that of MeCP2, the expression of Syndecan 2 

coincides with dendritic spine maturation (Ethell and Yamaguchi, 1999). Exogenous Syndecan 2 

expression induces increased dendritic spine formation, whereas blocking Syndecan 2 

phosphorylation by the EphB2 receptor results in reduced spine density (Ethell et al., 2001). 

Further mechanistic analyses will determine whether these genes are targets of MeCP2 and 

functional consequences their altered expression in Mecp2 KO neurons 
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In summary, our data indicate that MeCP2 is not critical for the early stages of 

neurogenesis, but is important for neuronal maturation in the postnatal brain. The fact that adult 

Mecp2 KO brains are more similar to immature WT brains than to mature WT brains suggests 

that MeCP2 is critical for regulating the transition of neurons from immature to mature stages. 
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Table 5.1. Genes that are expressed at different levels in hippocampal granule neurons of Mecp2 
KO mice. 
Gene Symbol Gene Description dChip Fold 

Change* 
(Range) 

Drop  
Confidence# 
(Range) 

Gene Bank IDs 

Genes expressed at higher levels 
Pfdn5 Prefoldin 5 1.61 94.5 - 99.0% NM_020031.1 
1110013I11Rik RIKEN cDNA 1110013I11 gene 2.58 99.80% BF608615 
Uchl1 Ubiquitin carboxy-terminal hydrolase 

L1 
1.53 83.6 – 90.9% NM_011670.1 

Sfxn3 Sideroflexin 3 1.34 85.7 - 87.6% NM_053197.1 
AL024345 expressed sequence AL024345 1.42 76.2 - 85.7% AV295157 
5031401C21Rik RIKEN cDNA 5031401C21 gene 1.42 98.0 - 98.4% AW537061 
Osbpl9 Oxysterol binding protein-like 9 1.36 87.6 - 89.3% AI875733 
Zipro1 Zinc finger proliferation 1 1.58 97.5 - 99.2% AI326272 
Arpc3 Actin related protein 2/3 complex, 

subunit 3 
1.49 2.5 - 83.6% BC013618.1 

Sdc2 Syndecan 2 1.49 60.5 - 85.7% NM_008304.1 
1500011H22Rik RIKEN cDNA 1500011H22 gene 1.37 26.7 - 83.6% BC019498.1 
1110020P15Rik RIKEN cDNA 1110020P15 gene 1.44 63.9 - 83.6% BF681728 

Genes expressed at lower levels 
Hmgb1 High mobility group box 1 -1.46 83.6 - 87.6% C78183 
Note: * Reference fold changes were obtained by dChip analysis; #, Confidence values were 
obtained by Drop analysis; the ranges are the maximum and minimum if multiple probe sets 
were returned. 
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6.1 ABSTRACT 

 

A final step of neurogenesis is the maturation of young neurons, which is regulated by 

complex mechanisms and dysregulation of this process is frequently found in 

neurodevelopmental disorders. MicroRNAs have been implicated in several steps of neuronal 

maturation including dendritic and axonal growth, spine development, and synaptogenesis. We 

demonstrate that one brain-enriched microRNA, miR-137, has a significant role in regulating 

neuronal maturation. Overexpression of miR-137 inhibits dendritic morphogenesis, phenotypic 

maturation, and spine development both in brain and cultured primary neurons. On the other 

hand, a reduction in miR-137 had opposite effects. We further show that miR-137 targets the 

MIB1 protein through the conserved target site located in the 3’ untranslated region of Mib1 

mRNA. MIB1 is an ubiquitin ligase known to be important for neurodevelopment. We show that 

exogenously expressed MIB1 could partially rescue the phenotypes associated with miR-137 

overexpression. These results demonstrate a novel miRNA-mediated mechanism involving miR-

137 and MIB1 that function to regulate neuronal maturation and dendritic morphogenesis during 

development. 
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6.2 INTRODUCTION 

 

In both embryonic and adult brains, neurogenesis is initiated from the neuronal fate 

specification of neural stem cells. To function properly, new neurons have to integrate into 

appropriate neural networks and establish correct communication with other neurons. A critical 

step in development is neuronal maturation, which is characterized by dendritic and axonal 

growth, synaptogenesis, neuronal and synaptic pruning, and modulations of neurotransmitter 

sensitivities (Waites et al., 2005; Webb et al., 2001). The process of neuronal maturation is 

regulated by complex mechanisms that are still unclear, and deficits in this step are evident in 

many neurodevelopmental disorders such Rett Syndrome, Fragile X syndrome, and autism, etc 

(Fiala et al., 2002). 

MicroRNAs (miRNAs) are small non-coding RNAs that can modulate gene expression at 

the post-translational level by targeting messenger RNA (mRNA), which leads to either reduced 

translation efficiency or cleavage of the target mRNAs. miRNAs are known to be involved in 

many cellular processes, such as proliferation, differentiation, apoptosis, and metabolism 

(Carninci et al., 2005; Chang and Mendell, 2007; Gangaraju and Lin, 2009; Liu and Zhao, 

2009b). Despite the fact that 70% of detectable miRNAs are expressed in the brain, where half 

that number are either brain specific or enriched (Cao et al., 2006). There have been few 

functional studies of miRNA in the nervous system. Recent evidence has shown that many 

miRNAs act locally at the neuronal dendritic spines (Lugli et al., 2008; Smalheiser and Lugli, 

2009). Both miR-134 and miR-138 are known to regulate dendritic patterning and spine 

morphogenesis by regulating protein translation at the synapse (Fiore et al., 2009; Schratt et al., 

2006; Siegel et al., 2009). In addition, brain-specific miR-124 is localized at presynaptic terminal 
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of Aplysia and regulates synaptic plasticity by regulating transcription factor CREB 

(Rajasethupathy et al., 2009). Recently, a neuronal activity-dependent miRNA, miR-132, is 

found to regulate dendritic development by targeting a Rho family GTPase-activating protein, 

p250GAP (Wayman et al., 2008). Therefore, small noncoding miRNA pathways could be an 

important and novel mechanism regulating mammalian neurodevelopment.  

In this study we show that a neuron-enriched miRNA, miR-137, has a significant role in 

the phenotypic maturation and dendritic morphogenesis of young neurons. We establish that 

miR-137 regulates the translation of the mouse homolog of Drosophila Mind bomb 1 (MIB1), an 

ubiquitin ligase known to be important for neurogenesis and neurodevelopment (Choe et al., 

2007; Itoh et al., 2003; Ossipova et al., 2009). Finally, we show that exogenously expressed 

MIB1 can partially rescue the phenotypic deficits associated with miR-137 overexpression. 

These data suggest that functional interaction between miRNA and MIB1 plays an important 

modulatory role in neuronal development. 

 

6.3 MATERIALS AND METHODS 

 

Animals 

All animal procedures were performed according to protocols approved by the University 

of New Mexico Animal Care and Use Committee. Wildtype C57/B6 mice were used for in vivo 

and in vitro studies. For histological analyses, mice were euthanized by intraperitoneal injection 

of sodium pentobarbital. Mice were then perfused with saline followed by 4% PFA. Brains were 
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dissected out, post-fixed overnight in 4% PFA, and then equilibrated in 30% sucrose. Forty-

micrometer brain sections were generated.  

 

Isolation and differentiation of adult hippocampal neuroprogenitors 

Adult hippocampal neuroprogenitors (A-94-NSCs) was characterized previously and 

NSC proliferation and differentiation were carried out as described (Palmer et al., 1997). (Zhao 

et al., 2003).  

 

Relative quantification of mature miRNAs by Taqman miRNA real-time PCR 

Mature miRNA expression was assayed using Applied Biosystems’ TaqMan microRNA 

assays or individual TaqMan miRNA assays) were performed according to protocols provided by 

the vendor (Lao et al., 2006). Detailed methods are provided in the Supplemental Data. 

Undifferentiated A94 NSCs were run in parallel with lineage specific differentiated A94 NSCs 

as paired samples. Data from the replicate experiments on undifferentiated A94 NSCs was then 

pooled and a single analysis of miRNA expression in each NSC lineage relative to 

undifferentiated NSCs was determined within the SDS v1.2 RQ manager to obtain the reported 

values.  

 

miRNA in situ hybridization 

In situ hybridization on 10 µm thick serial cryosections was carried out as outlined 

previously with a few modifications (Obernosterer et al., 2007). For hybridization 0.1 µl of 25 

M DIG- or FITC-labeled LNA probe (Exiqon) was added to 100 L hybridization buffer and 

applied to the tissue at 50-60 oC overnight (~20°C below the predicted melting temperature (Tm) 
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of probe:miRNA). Slides were mounted in Aquamount and visualized using confocal 

microscopy. Detailed methods are provided in the Supplemental Data 

 

Nucleic acid and expression constructs  

Control miRNA (miR-Con), miR-137, anti-miR-137, and anti-miRNA control (anti-miR-

Con) were purchased from either GenePharma (Shanghai, China) or Ambion (AM17100, 

AM17110, AM17000, and AM17010, Austin, TX). MIB1 expression plasmid was described 

previously (Choe et al., 2007).  Mib1 shRNA and non-silencing control was purchased from 

Qiagen/SABiosciences (KM26177G). Lentivirus-sh-Control was created by cloning the 

SureSilencing non-silencing control shRNA cassette into the HpaI and ClaI sites of lentiviral 

vector. The generation and validation of this Lentivirus-sh-Control was described previously 

(Barkho et al., 2008; Li et al., 2008). PCR based generation of the miR-137 shRNA driven by a 

U6 Pol III promoter was done as described in our publications (Barkho et al., 2008; Li et al., 

2008). Detailed methods and sequences of primers are provided in the Supplemental Data.  

Retroviral vector expressing both miR-137 and eGFP was engineered by deleting the original 

HpaI and ClaI sites in the CAG-EGFP vector (Smrt et al., 2007; Zhao et al., 2006) and inserting 

new HpaI and ClaI sites 5’-upstream from the CAG promoter. The sh-miR-137 or the sh-miR-

Control cassette were digested from Lentiviral vectors (see above) and inserted between the HapI 

and ClaI sites of the retroviral vectors. The lentiviral and retroviral vectors expressing sh-miR-

137 or sh-miR-Control were then verified by sequencing. 

 

Production of retrovirus expressing miR-137 and in vivo retroviral grafting 
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Retrovirus production was performed as described previously (Smrt et al., 2007; Zhao et 

al., 2006). Detailed methods are provided in the Supplemental Data. 

 

Maturation analysis of retroviral labeled new neurons 

Immunohistochemistry and confocal imaging analysis on floating brain sections were 

carried out as described (Smrt et al., 2007). Floating brain sections containing eGFP+ cells were 

selected for staining and matched by DG region. The primary antibodies used were chicken anti- 

GFP (Invitrogen, #A10262), mouse NeuN (Chemicon, MAB377), and rabbit anti-doublecortin 

(DCX, Cell Signaling, #4604). The secondary antibodies used were anti-chicken Alexa Fluor 

488 (Invitrogen, #A11039), goat anti-mouse Alexa Fluor 647 (Invitrogen, #A21236), and goat 

anti-rabbit Alexa Fluor 568 (Invitrogen, #A11036). 

For dendritic branching analysis on 300 µm thick floating brain sections, GFP+ neurons 

were imaged on a LSM 510 confocal with a 20x/oil objective. Z-stacks of GFP+ dendrites were 

captured at 8μm intervals and the dendrites and the cell body of single GFP+ neurons were 

analyzed by Neurolucida software (MicroBrightField, Inc.). Roughly 30-50 neurons per DG 

were traced. Data were extracted for Sholl analysis, total dendritic length, branch number, and 

dendritic end number for each GFP+ neuron. Neurons were selected for analysis based on 

expression of GFP throughout the cell body and its processes. Cells were excluded if they exhibit 

excessive overlapping with adjacent GFP expressing neurons, their morphology is not intact, 

they have membrane varicosities, or they show signs of cell death such as compacted chromatin 

structure revealed by DAPI staining. 

For dendritic spine density analyses and quantification of stage-specific neuronal 

markers, 1-in-3 of 40 µm floating brain sections containing eGFP+ cells (120 µm apart, 
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approximately 8 brain sections) were used for immunohistological staining using established 

protocols (Smrt et al., 2007). For the dendritic spine analysis above, the spine width was also 

manually measured as the distance of a straight line drawn across the widest part of the spine 

head using Image-J software (NIH Image). 

 

Isolation of primary neurons from mouse embryos and transfection of cultured neurons 

Hippocampal neurons were isolated from E17.5 fetal mice, and grown as described 

previously (Tafoya et al., 2006; Washbourne et al., 2002). Hippocampal neurons from wildtype 

E17.5 fetal mice were grown as dispersed mixed cell cultures, as established by the Wilson lab 

(Washbourne et al., 2002). Hippocampal neurons were transfected on day 4 (DIV 4) as they are 

undergoing dendritic and axonal morphogenesis during this time. Transfection was performed as 

described (Tafoya et al., 2006). 48hours after transfection, the neurons were fixed and stained as 

described below. Transfection efficiencies were 1-2%. 

 

Morphological analysis of transfected neurons 

Immunostaining of transfected neurons was performed as previously described (Barkho 

et al., 2008; Li et al., 2008; Smrt et al., 2007; Zhao et al., 2003). The primary antibody used was 

MAP2ab (mouse, 1:500, Sigma). The secondary antibody used was Cy3 (donkey anti-mouse, 

1:500, Sigma). Low transfection efficiencies (1-2% neurons) permit imaging and quantification 

of single GFP expressing neurons. GFP expressing neurons were imaged with an Olympus BX51 

upright microscope with 20x/oil immersion lens, a motorized stage, and digital camera. Dendritic 

traces were performed in real time using Neurolucida (MicroBrightField, Inc.) image analysis 
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software. The axon is identified using Map2 staining where the only process not positive for 

Map2 is the axonal process (Jugloff et al., 2005).  

 

3’-UTR dual luciferase assays of miR-137 target mRNA 

3’-UTR sequences of candidate mRNAs were PCR amplified directly from proliferating 

aNSC first strand cDNA generated from 5 μg TRIZOL-isolated total RNA using oligo-dT 

SuperScript III reverse transcription according to the manufacturer’s protocol (Invitrogen, Cat. 

#1808-093). These primer sequences are available upon request. All primers were designed 

incorporating XhoI and NotI restriction sites and 4 bp of extra random sequence to aid in 

restricting digestion. XhoI- and NotI-digested PCR products were cloned into XhoI- and NotI-

digested psiCHECK-2 dual luciferase vector (Promega, Cat# C8021) and were later transferred 

by XhoI/NotI double digestion and T4 DNA ligation into a pIS2 renilla luciferase vector 

modified with the addition of an XhoI restriction site and deletion of the SpeI restriction site. 

miR-137 target site deletion was done using the QuickChange Site-Directed Mutagenesis Kit 

(Stratagene, Cat. #2000518) to delete UUCGUUAU. Briefly, E17 hippocampal neurons were 

cultured (as described above), and co-transfected by Lipofectamine 2000 with pIS2 Renilla 

luciferase vector containing the Mib1 3’UTR, pIS0 firefly luciferase as a transfection control, 

and miR-Con, miR-137, anti-miR-137, or anti-miR-Con. All co-transfections used a total of 1 μg 

of plasmid DNA and 50ng of shRNA. At 48 h after transfection, the cell culture medium was 

removed and cells were lysed with 20 μl of 1X passive lysis buffer at room temperature for 15 

min and luciferase expression was detected using the Dual-Luciferase Reporter 1000 System 

(Promega, Cat# E1980) per the manufacturer’s protocol. R-luc activity was normalized to F-luc 

activity to account for variation in transfection efficiencies, and miR-137–mediated knockdown 
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of R-luc activity was calculated as the ratio of normalized R-luc activity in the U6-miR-137-

shRNA treatments to normalized R-luc activity in the U6-neg-shRNA treatments. Luciferase 

experiments were repeated at least three times.  

 

Production of lentivirus and infection of E17 hippocampal neurons 

Lentiviruses were produced as described previously (Barkho et al., 2008; Barkho et al., 

2006; Li et al., 2008). To study the effects of miR-137 on development of dendrites in cultured 

neurons, 1:1 solution of virus containing supernatant and Neurobasal A medium (Invitrogen) 

supplemented with 25 nM glutamate, 0.5 mM L- glutamine, and 1% antibiotics was added to the 

neurons 1 day after plating. After 24hours, the medium was replaced with fresh virus containing 

solution described above, and was incubated for an additional 24 hours. Infected neurons were 

collected in cell lysis buffer for western blot analysis. 

 

Western blot analysis 

Protein samples were separated on SDS-PAGE gels and then transferred to PVDF 

membranes (Millipore). Membranes were processed following the ECL Western Blotting 

protocol (GE Healthcare, Cat #RPN2106). Anti-MIB1 antibody (M20a) (Choe et al., 2007) were 

used at a 1:1000 dilution. HRP-labeled secondary antibodies were obtained from Sigma (A0545). 

For loading controls, membranes were stripped and reprobed with the antibody against GAPDH 

(Ambion AM4300).  

 

Statistical analysis 
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All statistical analyses were performed using unpaired, two-tailed, Student’s t-test. The 

data bars and error bars indicate mean ± standard error mean. (s.e.m). Sholl analysis was 

analyzed using a multivariate analysis of variance (MANOVA) using SPSS statistical software 

(SPSS version 17, SPSS Inc., Chicago, Ill, USA). 

 

6.4 RESULTS 

 

6.4.1 miR-137 is enriched in neurons 

To identify lineage specific miRNAs that may regulate development and function of 

neurons in the postnatal hippocampus, we profiled mature miRNA expression in adult 

hippocampal neuroprogenitors (A94-NSCs) differentiated into either neuronal or astrocytic 

lineages and compared the miRNA profile in undifferentiated A94-NSCs (Supplemental Figure 

S6.1A,B). We then quantitatively identified miRNAs that were enriched specifically in the 

neuronal lineage relative to the astrocytic lineage (Figure 6.1A). Several miRNAs, particularly 

miR-185, 27b, 182, 137, 29b, 132, and 146, showed enrichment in neurons, but not astrocytes or 

undifferentiated NSCs; among these miRNAs, miR-137 was previously found to be enriched in 

synaptosomes isolated from rat forebrains (Siegel et al., 2009; Silber et al., 2008). We further 

confirmed that the expression levels of miR-137 increased during neuronal differentiation of 

A94-NSCs (Figure 6.1B), and miR-137 expression levels were significantly higher in isolated 

primary neurons compared with aNSCs (Figure 6.1C). The highly enriched expression of miR-

137 in the neuronal lineage suggests that it may have important functions in neuronal 

development.  
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Figure 6.1. miR-137 is enriched in neurons and is expressed in the dentate gyrus and the molecular layer of the 
hippocampus. (A) Identification of lineage specific miRNAs in A94-NSCs. Plotted are the ratios of RQ values 
determined by comparing A94-NSCs differentiated toward the neuron lineage to undifferentiated A94-NSCs 
over RQ values determined by comparing A94-NSCs differentiated toward the astrocyte lineage to 
undifferentiated A94-NSCs (Figure S1A and S1B). Ratios ≥8 were set to a value of 8. ( B) miR-137 expression 
during neuronal differentiation of A94-NSCs for 0.5, 1, 2, 3, and 4 days (miR-137 expression calibrated to 
undifferentiated A94-NSCs, n=3, mean ± 95% CI). (C) Enrichment of miR-137 in E17 neurons as compared to 
mouse primary aNSCs (miR-137 expression calibrated to mouse primary aNSCs, n=3, mean ± SEM).  (D-E) 
Hybridization with a miR-137-specific probe showed an enrichment of miR-137 within the DG and molecular 
layer of the hippocampus compared with miR-1, which is expressed at low levels in the CNS (h, hilus; g, dentate 
gyrus; m, molecular layer).  

 

 

miR-137 is known to be expressed in the brain and enriched at the synaptic compartment (Siegel 

et al., 2009; Silber et al., 2008).  We reasoned that if miR-137 is indeed a mediator of 

neurodevelopment and function, it should be expressed in neurons of the adult hippocampus, 

which is a region of the brain exhibiting significant plasticity and continuous production of new 

neurons. Thus we chose to examine the cellular localization of miR-137 in the adult 
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hippocampus. Hybridization with an miR-137-specific probe showed an enrichment of miR-137 

within the dentate gyrus (DG) and molecular layer of the hippocampus compared with miR-1, a 

miRNA that is expressed at low levels in the central nervous system (CNS) (Figure 6.1D and E). 

Together, these data and the published literature (Siegel et al., 2009; Silber et al., 2008; 

Smalheiser and Lugli, 2009) suggest that miR-137 may play functional roles in neurons, perhaps 

during the formation of connectivity between neurons in the hippocampus. 

 

6.4.2 miR-137 regulates dendritic development and phenotypic maturation of 

new neurons in vivo  

Recently, miRNAs were found to be expressed at the synapse and play an important role 

in dendritic patterning and spine morphogenesis (Lugli et al., 2008; Schratt et al., 2006; Siegel et 

al., 2009). To determine whether elevated miR-137 levels in neurons can affect neuronal 

maturation and dendritic morphogenesis, we overexpressed miR-137 in newborn cells of the 

adult DG using retrovirus-mediated gene delivery (Smrt et al., 2007). This method, referred to as 

the single-cell genetic approach (Song et al., 2005; van Praag et al., 2002), makes use of 

recombinant retroviruses capable of specifically infecting dividing cells (Figure 6.2A). Because 

postnatal neurogenesis persists in the adult hippocampus, this method allows us to deliver a 

transgene specifically to newborn cells in the DG and perform a detailed morphological and 

phenotypic analysis on these newly generated neurons (Smrt et al., 2007; Song et al., 2005; Zhao 

et al., 2006). Using stereotaxic microinjection surgery, we grafted retrovirus expressing both 

eGFP and small hairpin miR-137 (sh-miR-137) into one hemisphere of the adult mouse DG, and 

injected a retrovirus carrying nonsilencing small hairpin control (sh-Con) into the contralateral 

hemisphere of the same animal (Figure 6.2A and B). At 4 weeks post-injection (4wpi), one 
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cohort of injected animals was used to generate thick (300-µm) sections, which preserves the 

dendritic arborization of eGFP-positive neurons and enables extensive morphological analysis. 

Individual eGFP-expressing neurons in these sections were imaged using confocal microscopy. 

To precisely evaluate the dendritic complexity of eGFP+ neurons, we reconstructed the eGFP+ 

dendritic arbor in 3 dimensions, rather than the traditionally flattened 2 dimensions, for image 

analysis using the Image Stack Module of Neurolucida analysis software (MicroBrightField, 

Inc.) (Figure 6.2C and D, Supplemental Figure S6.2A and B). Since previous reports have 

indicated that miR-137 has no affect on dendritic spine volume (Siegel et al., 2009), we 

performed quantitative analysis using established parameters for assessing neuronal dendritic 

development (Duan et al., 2007; Zhao et al., 2006). Sholl analysis indicated that miR-137-

overexpressing neurons exhibited significantly reduced dendritic complexity compared to sh-

Control-expressing neurons (F (1,65) = 8.78, p = 0.004, multivariate analysis of variance) 

(Figure 6.2E). In addition, miR-137-overexpressing neurons exhibited significantly reduced 

average dendritic length (n = 3 animals, p < 0.05), number of nodes (branch points) (n = 3, p < 

0.05), and number of dendritic endpoints (n = 3, p < 0.05) compared with young neurons 

expressing sh-Control (Figure 6.2F-H).  

Dendritic spine density increases as neurons mature, making the spine density a good 

indicator of neuronal maturation (Ge et al., 2006; Zhao et al., 2006). On the other hand, altered 

spine density is a common characteristic of abnormal synaptic development in a variety of 

neurological disorders such as Fragile-X and Rett syndrome (Fiala et al., 2002; Smrt et al., 

2007). We therefore used another cohort of virus-injected animals to generate 40-µm thin 

sections for dendritic spine analysis. To determine whether overexpression of miR-137 leads to 

deficits in spine morphogenesis, we analyzed the dendritic spine density of newborn GFP-
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expressing DG granule neurons at 4 weeks post-injection, a time at which labeled new neurons 

are believed to exhibit the dendritic morphology of mature neurons (Ge et al., 2006; Smrt et al., 

2007; van Praag et al., 2002; Zhao et al., 2006). To maximize consistency of our analyses, we 

focused on dendritic fragments 25-100 um from the cell body of each eGFP+ neuron. To 

quantify spine density, we counted the number of spines protruding from the dendrite within 

each 10-µm segment of dendrites. Quantitative analysis showed that miR-137-overexpressing 

neurons exhibited a 17% reduction in dendritic spine density compared with sh-Control-

expression neurons (n = 3, p < 0.01) (Figure 6.2I-K). The widths of dendritic spines in miR-137-

overexpressing neurons were no different from sh-Control-overexpressing neurons 

(Supplemental Figure S6.3). 
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Figure 6.2. miR-137 regulates dendritic development and phenotypic maturation of new neurons in vivo. (A) A 
schematic diagram showing the retroviral vector used for in vivo miR-137 expression. miR-137 (sh-miR-137) or 
control miR (sh-Con) was expressed as a short hairpin under U6 RNA Polymerase III promoter while eGFP was 
expressed under a chicken β-actin (CAG) promoter. (B) Schematic diagram showing that control virus (sh-Con) 
was injected into the left hemisphere, and retrovirus expressing miR-137 (sh-miR-137) was injected into the right 
hemisphere. (C, D) Confocal z-stacks showing eGFP-expressing neurons at 4 weeks post-injection (4 wpi) with 
representative traces from both the sh-Con (C) and sh-miR-137 condition (D) (scale bar = 50 µm). (E) Neurons 
overexpressing sh-miR-137 show reduced dendritic complexity compared with controls, as determined by Sholl 
analysis. (F-H) Neurons overexpressing sh-miR-137 show reduced dendritic length (F), number of nodes (branch 
points, G), and dendritic ends (H). (I) Neurons overexpressing sh-miR-137 show reduced dendritic spine density. 
(J) Confocal z-stacks showing eGFP-expressing dendrites (scale bar = 20 µm). (K) A representative dendritic 
segment used for spine density analysis  (* = p < 0.05) 

 

 

New neurons in the DG express development stage-specific markers that define their 

maturation (Figure 6.3A) (Ming and Song, 2005; Zhao et al., 2008). Using 

immunocytochemistry for doublecortin (DCX, an immature neuronal marker) and neuronal 

nuclear antigen (NeuN, a mature neuronal marker) immunostaining, new neurons in the DG were 

categorized into 3 subpopulations: immature neurons (DCX+ only), transitioning neurons 

(DCX+ and NeuN+), and mature neurons (NeuN+) (Brown et al., 2003; Smrt et al., 2007). We 

then determined whether new neurons overexpressing miR-137 had a developmental phenotype 

that could be measured by the expression of stage-specific markers. Thus, we analyzed 

retrovirus-labeled newborn neurons at 4 weeks post-injection, a time when many virus-labeled 

cells have differentiated into mature neurons (Figure 6.3A-C). We found that miR-137-

overexpressing cells differentiated into fewer eGFP+ neurons (either DCX+eGFP+ and/or 

NeuN+eGFP+ cells) in general compared with sh-Control-overexpressing cells (Supplemental 

Figure S6.4). We then quantified the proportion of each type of neuron among total eGFP+ 

neurons. The results summarized in Figure 6.3D show that neurons overexpressing miR-137 

displayed a significant difference in the proportion of immature vs. mature neurons compared 

with neurons overexpressing control (sh-Con). Specifically, miR-137-overexpressing neurons 

had an 80% decrease in the proportion of mature neurons (NeuN+, n = 3, p < 0.05) compared 
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Figure 6.3. Overexpression of miR-137 leads 
to altered neuronal maturation of new neurons 
in vivo. (A) Illustration showing the stage-
specific neuronal markers that can be used to 
identify the maturation state of developing 
DG granule neurons. (B, C) Confocal images 
showing two representative eGFP-expressing 
neurons in the DG: a relatively immature 
eGFP neuron (B) expressed DCX (immature 
marker) but not NeuN (mature neuron) and a 
relatively mature eGFP+ neuron (C) 
expressed NeuN but not DCX. (D) The miR-
137-overexpressing neuron population had 
decreased proportions of NeuN+ only (blue) 
mature neurons and of DCX+/NeuN+ 
(yellow) transitioning neurons, but increased 
proportion of DCX+ only (red) immature 
neurons compared with control (* = p < 
0.05).  
 

with control. Additionally, there was a 

19% decrease in the proportion of 

transitioning neurons (NeuN+/DCX+, 

n = 3, p > 0.05) and a 62% increase in 

the proportion of immature neurons 

(DCX+, n = 3, p = 0.05) compared 

with control. Therefore, this indicates 

that elevated levels of miR-137 alter 

the sequential events leading to the 

development of a mature DG granule 

neuron. Taken together, these in vivo 

data suggest that increased expression 

of miR-137 in newborn neurons results 

in decreased dendritic development. 
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6.4.3 miR-137 regulates neuronal dendritic development in vitro  

Since retrovirus infects only dividing cells, overexpression of miR-137 in dividing 

neuroprogenitors may affect initial neuronal differentiation, which might indirectly inhibit 

neuronal maturation. To investigate whether miR-137 overexpression affects neuronal 

maturation independent of its effect on the neuronal differentiation of neuroprogenitors, we 

turned to a well-established in vitro cultured primary neuron system and used both gain-of-

function and loss-of-function methods. Hippocampal neurons serve as a good model for studying 

molecular mechanisms controlling dendritic and spine development, because they form elaborate 

dendritic trees, functional synapses, and they can respond to both chemical and electrical 

stimulations (Fletcher et al., 1994; Goslin and Banker, 1989; Okabe et al., 1998). We isolated 

neurons from the hippocampi of E17.5 mouse embryos and plated them into serum-free medium 

to limit astrocyte proliferation. To modulate miR-137 expression, we overexpressed miR-137 

using two different gain-of-function assays. First, we expressed miR-137 as a small hairpin RNA 

plasmid using a lentiviral vector that also expresses eGFP (Figure 6.4A) (Li et al., 2008). 

Second, we cotransfected neurons with miR-137 synthetic double-stranded RNA and an eGFP 

expression plasmid. Concurrently, we performed a loss-of-function assay to knock down 

endogenous miR-137 in cultured hippocampal neurons using a 2’-O-methylated antisense 

oligonucleotide.  

At 48 hours post-transfection, eGFP-expressing neurons were imaged, and the 

morphology of the soma, dendrites, and axons were manually traced and measured using 

Neurolucida (MicroBrightField, Inc.) image analysis software (Figure 6.4B and C). Transfected 

eGFP+ neurons had clearly identifiable dendrites and axons, and axons were distinguished from 
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dendrites by two characteristics: axons are the longest among all processes and have negative 

staining for MAP2, a somatodendritic marker (Jugloff et al., 2005). The morphology of cultured 

hippocampal neurons is not as uniform as developing neurons in the DG of the hippocampus, 

which may account for the variability we saw in neuronal morphometry. However, the 

morphological differences between neurons expressing miR-137 and controls were apparent 

(Supplemental Figure S6.5A, B). Neurons transfected with plasmid expressing sh-miR-137 had a 

significantly reduced dendritic complexity (F(1,52) = 5.15, p < 0.05 multivariate analysis of 

variance) (Figure 6.4D) and 23% reduction in total dendritic length (n = 3, p < 0.05) (Figure 

6.4E) compared with sh-Control-transfected neurons. Consistent with this result, neurons 

transfected with synthetic miR-137 also showed a 23% reduction in dendritic length and reduced 

dendritic complexity compared with miR-Control-transfected neurons (n = 3, p < 0.01) (Figure 

6.4F and G). On the other hand, neurons transfected with a specific inhibitor of miR-137 (anti-

miR-137) had increased dendritic complexity (F(2,51) = 3.58, p = 0.036 multivariate analysis of 

variance) (Figure 6.4F) and a significant 25% increase in total dendritic length (n = 3, p < 0.01) 

(Figure 6.4G) compared with control anti-miR (anti-miR-Con)-transfected neurons. The total 

number of dendritic ends and nodes had a similar trend of a reduction in neurons transfected with 

miR-137 and an increase in anti-miR-137-transfected neurons; although these differences did not 

reach statistical significance (Supplemental Figure S6.4C and D). These loss-of-function and 

gain-of-function data in primary neurons further support our in vivo observation that high levels 

of miR-137 inhibit neuronal dendritic development. 
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Figure 6.4. miR-137 is important for dendritic development in vitro. (A, B), E17 primary hippocampal neurons 
were transfected with lentiviral vectors expressing either control Con (A) or miR-137 (B), as well as eGFP. Single 
eGFP-expressing neurons were shown next to their representative traces (scale bar = 50 µm; 20x/oil). (C), Sholl 
analysis showing neurons overexpressing sh-miR-137 had reduced dendritic complexity compared with neurons 
overexpressing sh-Control. (D), Neurons overexpressing sh-miR-137 had reduced total dendritic length compared 
with controls. (E), Sholl analysis showing that neurons overexpressing miR-137 had reduced dendritic complexity 
compared with controls, whereas neurons transfected with an anti-miR-137 had opposite effect. (F), Neurons 
overexpressing miR-137 had reduced total dendritic length compared with neurons overexpressing miR-Control. 
On the other hand, neurons transfected with anti-miR-137 showed increased dendritic length compared to neurons 
transfected with anti-miR-Control. (G) A schematic diagram showing the lentiviral vector used for miR-137 
expression. miR-137 (sh-miR-137) or control miR (sh-Con) was expressed as a short hairpin under U6 RNA 
Polymerase III promoter while eGFP was expressed under a CMV promoter. (* , p < 0.05, ** , p < 0.01) 
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6.4.4 Mind Bomb-1 is a Translational Target of miR-137  

To determine how miR-137 affects dendritic morphology during neuronal development, 

we first took a bioinformatic approach to identify the potential mRNA targets of miR-137. We 

referenced TargetScan 4.1, PicTar, and miRanda to compile a set of potential candidate targets 

(John et al., 2004; Krek et al., 2005; Lewis et al., 2003a). Next, we selected a subset of targets 

for further analyses based on 3 criteria: conservation, context score of target “seed sequences,” 

and known relevance to dendritic morphogenesis and neuronal development. Among the top 

candidate miR-137 targets are a mouse homolog of Drosophila mind bomb 1 (MIB1), histone 

H3K27 methyltransferase Ezh2, EphA7, and chromatin modulator NcoA3 (Table S1). We first 

cloned the 3’-untranslated region (3’-UTR) of these four candidates containing the predicted 

miR-137 target site from mouse cDNA into a Renilla luciferase (R-luc) reporter construct (see 

Figure 6.5B for example). This allowed us to assess protein translation of these targets regulated 

through their 3’-UTR. This 3’-UTR R-luc constructs along with a firefly luciferase (f-luc) 

control plasmid were cotransfected into HEK 293 cells. We found that miR-137 could repress 

the translation of luciferase through these 3’-UTR. Then we selected the expression plasmids of 

the top two candidates, Mib-1 and Ezh2, to transfect into primary neurons. We found that MIB1, 

but not EZH2, could promote dendritic morphogenesis, similar to the effect of anti-miR-137. 

MIB1 was a particularly interesting candidate because it was previously shown to be enriched in 

the postsynaptic compartment by mass spectrometry (Choe et al., 2007; Sheng and Hoogenraad, 

2007). In addition, in our initial functional screening by overexpressing these candidate targets in 

cultured primary neurons, MIB1 demonstrated the most dramatic effect on promoting neuronal 

dendritic length (data not shown). We therefore decided to further investigate whether MIB1 is a 

functional target of miR-137. To further test whether miR-137 could target Mib1, we cloned the 
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3’-untranslated region (3’-UTR) of Mib1 containing the predicted miR-137 target site, from 

mouse cDNA into a Renilla luciferase (R-luc) reporter construct (Figure 6.5B). This allows us to 

assess MIB1 protein translation regulated through its Mib1 3’-UTR. This 3’-UTR R-luc 

construct along with a firefly luciferase (f-luc) control plasmid were cotransfected into cultured 

primary neurons. We found that overexpression of miR-137 suppressed over 50% of the R-luc 

activity in primary neurons at 48 hours post-transfection (n = 7, p < 0.001) (Figure 6.5C). On the 

other hand, transfected anti-miR-137 led to a 28% increase in R-luc activity compared with the 

anti-miR control (anti-miR-Con, n = 3, p < 0.05) (Figure 6.5D). To further validate the 

interaction between miR-137 and its target Mib1 3’-UTR, we mutated the seed sequence of miR-

137 located within the Mib1-3’-UTR reporter (Figure 6.5,B lower panel). This mutation 

substantially alleviated the miR-137-mediated suppression of luciferase activity, suggesting that 

the action of miR-137 is specific to the miR-137 seed region within the Mib1-3’-UTR (n = 5, p < 

0.001) (Figure 6.5E).  

To investigate the effect of miR-137 on endogenous MIB1 expression in neurons, we 

used the lentivirus expressing sh-miR-137 (Figure 6.4A) to infect cultured primary neurons. 

Lentivirus transduction allows us to achieve relatively high expression efficiency (~50%) in 

mouse primary neurons (Figure 6.5F). Neurons infected by sh-miR-137 expressing virus had a 

13% decrease in endogenous MIB1 expression compared with neurons infected by control virus 

(sh-Con, n = 3, p < 0.05) (Figure 6.5G). Taken together, these data suggest that miR-137 

regulates the protein expression of MIB1 through the 3’-UTR of Mib1. 
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Figure 6.5. Mib1 is a functional target of miR-137. (A) A miR-137 target site was found in the Mib1 3’ 
untranslated region (3’UTR) as predicted by TargetScan software. The Mutant Mib1 3’UTR used in B-E with 
miR-137 site deleted is shown. (B) Schematic diagram showing the predicted seed region where miR-137 is 
expected to bind the rLuc-Mib1 3’-UTR (upper), and the mutated version lacking the binding site for miR-137. 
(C) Mib1-3’-UTR–dependent expression of a Renilla luciferase reporter gene (R-luc) was suppressed by miR-
137 over 50% in DIV6 primary neurons at 48 hours post-transfection (n = 7, p < 0.001). The 3’-UTR-dependent 
Renilla luciferase (R-Luc) activities were normalized to control firefly luciferase (f-Luc) activities in the result of 
miR-137 coexpression was calculated relative to the miR-Con in C-E. (D) The mutant Mib1-3’-UTR alleviated 
the miR-137-mediated suppression of luciferase activity, suggesting that the action of miR-137 is specific to the 
miR-137 seed region within the Mib1-3’-UTR (n = 5, p < 0.001). (E) Mib1-3’-UTR–dependent expression of R-
Luc was enhanced 28% by anti-miR-137 (n = 3, p < 0.05). (F), 10x fluorescence and bright field images showing 
high infection efficiency of lentivirus expressing sh-miR-137 (also eGFP) in E17 primary cortical neurons. (G) 
Primary neurons infected with lentivirus expressing sh-miR-137 had reduced Mib1 protein expression compared 
with neurons infected with lentivirus expressing sh-Con at 48 hours post-infection. (*, p < 0.05; ***, p < 0.001) 
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6.4.5 Expression of MIB1 rescues the miR-137-mediated reduction in 

dendritic complexity  

Since we have confirmed that miR-137 targets MIB1, we performed additional 

experiments to determine whether MIB1 could rescue the miR-137 overexpression-induced 

reduction in dendritic complexity. We showed that overexpression of MIB1 led to significant 

increases in both dendritic length (n = 5, 41% +/-0.12 SEM, p < 0.01) and dendritic complexity 

(F(1,36) = 23.00, p < 0.001) compared with control vector-transfected neurons (Figure 6.6A and 

B). On the other hand, using a specific small hairpin RNA (shRNA) against Mib1 (Supplemental 

Figure S6.6), we also showed that acute knockdown of MIB1 led to a significant decrease in both 

dendritic length (37.5% +/-0.09 SEM, n = 3, p < 0.05) and dendritic complexity (F(1,47) = 

49.00, p < 0.001) compared with control shRNA-transfected neurons (Figure 6.6A and B). Then, 

we cotransfected neurons with MIB1 expression plasmid and a synthetic miR-137 and show that 

MIB1 overexpression partially rescued the miR-137-mediated reduction both in dendritic length 

(n = 4, 6% difference between “Mib1+miR-137” and “Control GFP”, 33% difference between 

“Mib1+miR-137” and “miR-137”) (Figure 6.6A) and in dendritic complexity (F(1,35) = 18.51, p 

< 0.001) (Figure 6.6C). These data suggest that miR-137 regulates dendritic morphogenesis in 

developing neurons, at least in part, by translational regulation of MIB1 (Figure 6.6D). 
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Figure 6.6.  MIB1 could rescue the neuronal maturation deficits associated with miR-137 overexpression in 
vitro. (A) Overexpression of MIB1 enhanced dendritic length, whereas acute knockdown of MIB1 (Mib1 
shRNA) reduced dendritic length. MIB1 expression partially rescued the miR-137-mediated reduction in 
dendritic length in cultured primary neurons. (B) Overexpression of MIB1 enhanced the dendritic complexity of 
cultured neurons, whereas acute knockdown of MIB1 reduced dendritic complexity. (C) MIB1 could rescue the 
miR-137-mediated reduction in dendritic complexity (F(1,35) = 18.51, p < 0.001). (D) A hypothetic model 
illustrating that miR-137 may regulate dendritic morphogenesis in developing neurons, at least in part, by 
translational regulation of MIB1. (*, p < 0.05; **, p < 0.01; ***, p < 0.001). 
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6.5 DISCUSSION 

 

The potential functions of miRNAs acting locally at the neuronal dendritic spines are just 

beginning to be explored (Smalheiser and Lugli, 2009). Several miRNAs are found to be 

localized and functioning in dendrites and synapses. Among them, miR-132 and miR-137 are 

both enriched in dendritic spines, but whereas miR-132 represses spine volume, miR-137 shows 

no effect on spine volume (Siegel et al., 2009). Therefore it is likely that individual miRNAs at 

the synapse play specialized roles in dendritic morphogenesis and synaptic development. 

Although the specific mechanisms underlying miRNA regulation of neuronal development are 

not fully clear, current experimental evidence suggest that miRNAs can have functions during all 

stages of neuronal development, including neural stem cell proliferation, neuronal fate 

specification, neurite outgrowth, and spine development (Liu and Zhao, 2009a). In the case of 

miR-137, we believe that it may play a dual role in neurogenesis. miR-137 is found to induce 

differentiation of adult mouse neural stem cells as well as mouse oligodendroglioma-derived 

stem cells and human glioblastoma multiform-derived stem cells (Silber et al., 2008). Studies 

from our lab have shown that miR-137 also plays a role in the proliferation and differentiation of 

adult neural stem cells by targeting histone H3K27 methyltransferase Ezh2 (Szulwach et al., 

2010). Interestingly, we found that miR-137 regulates dendritic morphogenesis by targeting 

MIB1, not EZH2 (Supplemental Table S6.1). These studies suggest that miR-137 plays different 

roles during the early and late stages of adult neurogenesis in the hippocampus. Additionally, our 

ISH data (Figure 6.1) shows miR-137 expression is widespread in the DG, suggesting that miR-

137 may function in both developing and mature neurons. In fact, Siegel et al have found miR-

137 is one of the miRNAs enriched in the synpatosome postnatal mature neurons (Siegel et al., 
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2009). Interestingly, double ISH/immunohistochemistry shows miR-137 overlaps with 

presynaptic synapsin, indicating that miR-137 may also function in the pre-synaptic 

compartment, in addition to the dendritic and postsynaptic compartment. It is well known that 

local protein synthesis is important for synaptic transmission and plasticity. In mature neurons 

miR-137 may regulate the translation of a subset of proteins that are important for neuronal 

activity-dependent protein expression and synaptic plasticity, similar to what has been found for 

miR-132 (Vo et al., 2005). Thus, an interesting question to pursue would be whether miR-137 

can mediate neuronal activity-dependent dendritic development. It is also possible that miR-137 

has effects on the maintenance and survival of neurons. One could speculate that miRNAs in the 

dendrite may participate in the regulation of local protein translation and modify synaptic 

plasticity at the synaptic compartment; however, a complete story of how miRNAs and their 

dendritic target mRNAs regulate dendritic morphogenesis and synaptic development has yet to 

be told and remains a critical area of future neurodevelopment studies.  

The most challenging step in determining the function of miRNA is to identify their 

downstream mRNA targets. Based on bioinformatic databases, we know that each miRNA can 

have many potential mRNA targets, yet whether these predicted mRNA targets are functional in 

the context of miRNA-mediated gene regulation remains to be determined. However, only a 

small number of these predicted targets are true targets. In addition to MIB1, several additional 

miR-137 targets are strongly associated with neuronal development and synaptic function 

including Ezh2, EphA7, EphB2, NcoA3, Shank2, and Snap23. Even though some of these 

predicted targets did not show obvious functional rescue in our initial screening, we cannot rule 

out the possibility that miR-137 could function by modulating the translation of these genes to a 
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lesser extent. Further experiments to identify additional miR-137 targets will give us a more 

complete picture of miR-137 function during neurodevelopment 

An interesting question to pursue would be whether miR-137 can mediate neuronal 

activity-dependent dendritic development. Although neurons contain many potential targets of 

miR-137, we chose to follow ubiquitin ligase MIB1, because mass spectrometry has shown it to 

be enriched in the postsynaptic compartment (Choe et al., 2007; Sheng and Hoogenraad, 2007). 

Mib1 was first cloned and studied in zebrafish (Itoh et al., 2003), and the loss of MIB1 led to 

reduced lateral inhibition of Notch signaling, which in turn triggered changes in the number of 

progenitors and neuronal differentiation during zebrafish CNS development (Itoh et al., 2003). 

MIB1 is an E3 ubiquitin ligase and promotes ubiquitination and internalization of the Notch 

ligand Delta, leading to Notch pathway activation. In mammals, the function of MIB1 is not fully 

clear. In one study, MIB1 was found to activate the Notch pathway in embryonic mice, and Mib1 

mutant mice exhibit deficits in neurogenesis and resemble mice lacking Notch signaling 

components (Koo et al., 2005). MIB1 was also shown to be phosphorylated by PAR-1, resulting 

in MIB1 degradation and stimulation of neuronal differentiation in mammalian neuronal 

progenitors (Ossipova et al., 2009). Similarly, Notch activation by MIB1-positive newborn 

neurons and intermediate progenitors in mice functions to ensure the maintenance of stem cell 

properties of radial glia during neurodevelopment (Yoon et al., 2008). A recent study shows that 

MIB1 inhibits dendritic development in cultured rat cortical neurons (Choe et al., 2007). The 

precise role of MIB1 in mammalian dendritic development is unknown; however, the importance 

of MIB1 in neuronal maturation is clearly demonstrated by both the published literature and our 

data.  
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The possible role of the E3 ubiquitin ligase MIB1 in neuronal maturation is intriguing, 

albeit vastly speculative. The ubiquitin pathway is best known for its role in marking target 

proteins for specific proteolysis by proteasomes; however, the ubiquitin pathway may also be 

involved in regulating the abundance of postsynaptic receptors (Burbea et al., 2002). A neuronal 

deficiency of UBE3A, an ubiquitin protein ligase involved in protein degradation, causes 

Angelman syndrome, which is characterized by severe mental retardation. In recent studies, 

UBE3A was found to localize to the synapse, and its deficiency resulted in abnormal dendritic 

and spine morphology (Dindot et al., 2008; Lu et al., 2009). MIB1, on the other hand, seems to 

be involved in protein trafficking rather than protein degradation (Itoh et al., 2003). It may 

modify postsynaptic receptors or other regulatory molecules at the synapse and alter their 

intracellular localization, hence its involvement in dendritic patterning in developing and mature 

neurons. The fact that MIB1 can rescue the dendritic deficits associated with miR-137 

overexpression further supports the positive effects of MIB1 on mammalian dendritic 

morphogenesis and its role as one of the downstream effectors of miR-137. Understanding this 

pathway may also shed light on the molecular mechanism underlying neurodevelopmental 

disorders associated with neuronal dendritic deficits. 

 

6.6 SUMMARY 

 

Our goal is to understand how noncoding miRNAs regulate development and functions of 

neurons. We have discovered a number of miRNAs that are enriched in neuronal lineage, relative 

to either astrocytic lineage or undifferentiated NSCs. Here we show that one of these miRNAs, 

miR-137, has an important modulatory role in dendritic morphogenesis during neuronal 
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development both in vivo and in vitro. We find that overexpression of miR-137 using the 

“single-cell genetic approach” in newborn neurons of the adult hippocampus results in reduced 

dendritic complexity and spine density; however, since the single-cell genetic approach 

specifically targets proliferating cells prior to neuronal differentiation, we also confirmed that 

overexpression of miR-137 has the same effect on postmitotic cultured hippocampal neurons. 

Both overexpression and inhibition of miR-137 have significant but opposite effects on dendritic 

complexity. Therefore, our data indicate that proper expression of miR-137 is required for the 

normal dendritic development of hippocampal neurons. 
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6.8 SUPPLIMENTAL FIGURES 

Supplemental Figure S6.1 
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Figure S6.1. A-B, Profile of mature miRNA expression in adult hippocampal neuroprogenitors (A94-NSCs) 
differentiated into either neuronal or astrocytic lineages compared to undifferentiated progenitors. C, Double 
ISH/immunohistochemistry to show miR-137 overlaps with pre-synaptic synapsin (h, hilus; g, dentate gyrus; m, 
molecular layer). 
 

Figure S6.2. Sample traces of in vivo virus-infected neurons used for analysis in Figure 3. 
 

Figure S6.3. The widths of dendritic spines in miR-137-
overexpressing neurons were no different from sh-Control 
overexpressing neurons at 4 weeks post-labeling.  
 

Figure S6.1. A-B, Profile of mature miRNA expression in adult hippocampal neuroprogenitors (A94-NSCs) 
differentiated into either neuronal or astrocytic lineages compared to undifferentiated progenitors. C, Double 
ISH/immunohistochemistry to show miR-137 overlaps with pre-synaptic synapsin (h, hilus; g, dentate gyrus; m, 
molecular layer). 
 

Supplemental Figure S6.2 
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Figure S6.4. Fewer miR-137-overexpressing cells differentiated 
into neurons (both NeuN+ and DCX+) analyzed at 4 weeks post 
viral labeling. 
 

Figure S6.5. miR-137 
overexpression led to 
reduced dendritic complexity 
in primary hippocampal 
neurons. A-B, Sample traces 
of E17 hippocampal neurons 
transfected with miR-137 
used in Figure 5. C, 
Additional parameters used 
to assess dendritic 
morphology (non-
significant). 
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Figure S6.6. Validation of Mib1 shRNA using 
Western blotting.  Mib1 expression vectors and 
4 different Mib1 shRNA plasmids were co-
transfected into HEK293 cells. The cell lysate 
was analyzed for mouse Mib1 expression using 
Western blotting. Among the 4 shRNAs tested, 
number 3* showed the best knockdown 
efficiency and was used for Figure 6 
experiments. 
 

 
Supplemental Figure S6.6 

 
 
 
 
 
Supplemental Table S6.1 
 
Table S6.1. Top candidate mRNA targets of miR-137.  
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CHAPTER 7: 
Summary and Critique 

 

7.1 Summary 

 Dendrites and the dendritic spines of neurons are the key sites of synaptic input and 

connectivity in the brain and have been recognized as the locus of long-term synaptic plasticity. 

The development of dendrites and spines in mammals is a complex process that requires specific 

molecular events that function to signal neuronal differentiation, dendritic morphology, and 

synaptogenesis. These events are tightly regulated by genetic and epigenetic mechanisms, 

including DNA methylation, chromatin remodeling, and the noncoding RNA-mediated process. 

It has been shown that the altered spine morphology associated with pathological conditions can 

affect the properties of an individual neuron, the neural networks, and mental function as a 

whole. In fact, dendritic spine distribution and structure is abnormal in many diseases and 

injuries, as well as many forms of mental retardation; however, spine characterizes can also be 

potentiated by neuronal activities and an enriched environment. Understanding the pathways that 

lead to altered spines in pathological conditions will provide researchers with a better 

understanding of the conditions that contribute to normal dendritic spine and synaptic formation 

during development and learning in the adult brain. Despite the fact that several protein 

pathways have been identified as critical players in spine development and pathology, the 

molecular pathogenesis of aberrant spine morphology in these diseases has yet to be clearly and 

comprehensively elucidated. The goal of this thesis is to determine how epigenetic factors 

influence the key characteristics of neuronal maturation in developing neurons of the adult 

hippocampus to further elucidate the pathophysiology of abnormal spine morphogenesis in MR.  
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In the previous chapters, I described how a Mecp2 mutant mouse model can be used to 

investigate the role of MeCP2-mediated epigenetic regulation of hippocampal development 

(Smrt et al., 2007). The data collected in this study showed that MeCP2 is not critical for the 

early stages of neurogenesis, but is important for neuronal maturation and spine distribution in 

the postnatal hippocampus. In a separate study, I showed that a brain-enriched microRNA, miR-

137, has a significant role in regulating neuronal maturation in vivo and in vitro by modulating 

the expression of a MIB1 (Smrt et al., 2010). The data indicated that proper expression of miR-

137 is required for normal dendritic development of hippocampal neurons.  

In summary, this research shows that epigenetic control of expression pathways, which 

include MeCP2 and non-coding microRNAs, are required for normal dendrite development of 

hippocampal neurons, and demonstrate how alterations in epigenetic and noncoding RNA-

mediated processes can result in morphological and phenotypic abnormalities that are a 

fundamental characteristic MR, such as that seen in fragile X, autism, and Rett syndrome. The 

first major discovery of this work is that MeCP2 epigenetically regulates a number of specific 

miRNAs in adult brain-derived neural stem cells (NSCs) under both proliferating and neuronal 

differentiating conditions. One of the miRNAs is miR-137. MeCP2 was found to bind directly to 

the genomic region proximal to miR-137, and absence of MeCP2 binding to this region 

correlated with an altered chromatin state and enriched miR-137 expression (Szulwach et al., 

2010). Additionally, this finding shows that miR-137 is significantly upregulated in the absence 

of MeCP2 in the adult mouse brain and primary neurons (see APPENDIX A). The second major 

discovery of this work is that miR-137 itself has a profound effect on the development of 

dendritic structure and dendritic spine distribution in newborn neurons of the hippocampus and 

in post-mitotic cultured neurons from mice. These data support the idea that miR-137 may exert 
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Figure 7.1. A simple model based on my dissertation research (Smrt et al., 2010) showing how crosstalk between 
epigenetic (MeCP2) and non-coding RNA (miR-137) pathways may converge on a protein coding gene (Mib1) to  
influence the morphogenesis of dendrites and dendritic spines (Smrt et al., 2010). A more complex model is shown 
in Figure 7.2. 

its biological effects, at least in part, through its interaction with MIB1 (Smrt et al., 2010). The 

overall model of this research is that epigenetic and non-coding RNA pathways, particularly the 

crosstalk between these pathways (Smrt et al., 2010; Szulwach et al., 2010) influence the 

morphogenesis of dendrites and dendritic spines. Thus, because MeCP2 can alter expression of 

specific miRNAs, including miR-137, I propose that altered expression of miRNAs may 

contribute to the dendrite and dendritic spine pathogenesis observed in Rett Syndrome (Figure 

7.1 and 7.2).  

 

Although these novel discoveries strengthen the link between epigenetic and non-coding 

RNA pathways, much is still unknown about the diversity of epigenetic and non-coding RNA 

molecules that may be interacting to shape the expression of developmentally relevant protein 

coding genes. Furthermore, many of these pathway interactions may only play a functional role 

in a specific cell type, or at a specific developmental period. It is important to realize the 

complexity of epigenetic and non-coding RNA pathways during development. For instance, a 

single epigenetic regulator such as MeCP2 can affect the expression of multiple miRNAs 
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(Szulwach et al., 2010) along with the expression of coding genes, and miRNAs such as miR-

137 have multiple predicted targets (Figure 7.2). My dissertation research is only the “tip of the 

iceberg” in terms of drawing a direct link between epigenetic and non-coding RNA pathways 

and their role in dendritic development. 

In the remainder of this chapter, I address some specific concerns and limitations 

surrounding my research, and expand on some strategies I have used to address many of those 

concerns. I also speculate on additional experimental procedures that may strengthen my 

dissertation research and present alternative possibilities that may explain my findings. Finally, I 

discuss the future directions of my research. 
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Figure 7.2. Detailed overall model summarizing this dissertation research showing how crosstalk between 
epigenetic (MeCP2) and non-coding RNA (miR-137) pathways may involve a complex series of pathways that 
ultimately influence the morphogenesis of dendrites and dendritic spines (Smrt et al., 2010; Szulwach et al., 2010).  
A. miR-137 expression is correlated with global changes in histone acetylation which could persist throughout 
neurogenesis and affect miR-137 expression during maturation. Additionally, activity dependant phosphorylation of 
MeCP2 can influence its association with DNA.  B. MeCP2 modulates miR-137, but may also modulate the 
expression of other miRNAs and unknown factors.  C. miR-137 has been shown to regulate MIB1 expression, but it 
may also regulate other factors important for neuronal maturation.  D. MIB1, a ubiquitin ligase, may interact with 
other molecules like EEA and cateninis. E. Molecules downstream of MIB1, EEA1, and catenins may interact with 
synaptic molecules such as SDC1 (Smrt et al., 2007) and receptors such as NMDA and AMPA to influence dendritic 
morphology and dendritic spine development. Red lines indicate pathways confirmed in this dissertation research, 
blue lines indicate pathways confirmed in other papers, and grey lines are possible pathways that have yet to be 
confirmed. 
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7.2 Critical analysis of my dissertation research 

 

7.2.1 Limitations and concerns surrounding cultured neurons 

Both the reviewers of my manuscript (Smrt et al., 2010) and members of my dissertation 

committee have raised concerns about cultured primary neurons as a model for 

neurodevelopment. Although primary neurons dissociated from an embryonic brain and grown in 

culture dishes are accepted as a valuable model in neuroscience to study the biological properties 

of neurons (Goslin and Banker, 1989), cultured neurons have many inherent differences 

compared to those neurons which function in a living brain. The primary concern regarding these 

differences is how they may affect the conclusions drawn from experiments using neuronal 

culture. One can imagine that if the procedure for isolating primary hippocampal neurons 

involves stripping developing neurons of their normal chemical and physical contacts, they must 

somehow be different. 

This concern is certainly a “no brainer” (pun intended) as the conditions between in vitro 

(dish) and in vivo (brain) are different in notable ways. Specifically, primary neurons are cultured 

in a standardized culture medium which contains factors needed for metabolism and survival of 

neurons in culture; however this rich medium could not fully recapitulate all of the factors found 

in a specific brain microenvironment, which interacts with a specific group of neurons. 

Formation of functional neural networks is a fundamental characteristic of brain development. In 

culture, post-mitotic neurons are taken out of their native networks, and asked to form new 

synapses and network connections. Although formation of synapses and networks are highly 

characterized in cultured neurons, the number and complexity of networks in the standard culture 

method could certainly not rival the brain. Another difference between cultured neurons and the 
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brain is that cultured primary neurons suffer from increased degeneration over time. After about 

3-4 weeks in culture, hippocampal neurons rapidly lose their synaptic connections and begin to 

die. This is different from the living brain where many of our neurons must maintain synaptic 

connectivity and continue to function for a lifetime. Changes in any of these variables may have 

an impact on the outcome of in vitro experiments. For that reason, we favor in vivo experiments 

to complement the compelling evidence we gather from primary neuronal culture. 

In my study, I used both cortical and hippocampal neuronal cultures taking advantage of 

the strength of both. As I mentioned in the manuscript, cortical culture yield more neurons with 

higher purity of neurons (>90%), which allows for biochemical and molecular pathway analysis. 

On the other hand, hippocampal neurons, generally containing >70% astrocytes, are more 

suitable for neuronal maturation analysis. However, I am aware of the limitation of both culture 

systems. Between cortical and hippocampal neuronal isolation, which are two common primary 

culture methods that both share a nearly identical isolation protocol, cortical cultures can be 

considered the most heterogeneous in terms of the variety of cell types cultured. For example, 

cortical cultures contain all the cell types and brain regions of the neocortex. If the experimenter 

is not careful during dissection, cortical cultures may even contain striatum, hippocampus, and 

olfactory bulb neurons. However if the dissection is performed correctly, with a strict criteria for 

removing the additional brain structured mentioned, the cortical preparation will still contain 

neurons of various cortical regions, birthdates, neurochemical function, and epigenetic 

background. Thus, it is important to determine how the variability, or heterogeneity, in cortical 

cultures will impact the question that is being asked. One of the major benefits of hippocampal 

cultures is that they are far more homogeneous than cortical cultures. Specifically, hippocampal 

cultures of E17.5 mouse embryos contain primarily CA1 neurons, as the dentate gyrus has not 
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formed at this early developmental time point. Although mouse hippocampal cultures isolated at 

E17.5 are more homogenous than cortical cultures isolated at the same time, they are not devoid 

of other cell types. Thus, I have made an effort to produce cultures that are enriched with 

neurons, making cellular and biochemical analysis of neurons possible (See Appendix Figure 

A.6). Despite the advantages of hippocampal cultures, they produce a lower yield of neuronal 

product in terms of total number of neurons compared to isolated cortex. This can limit the 

number of conditions that can be held in a single experiment. Many experiments (e.g. ChIP, WB, 

etc) prefer a generous amount of starting product which may favor cortical preparations.  

 

7.2.2 Limitations and concerns surrounding in vivo retroviral targeting 

One effective way for me to study gene regulation in neuronal development is to 

manipulate young neurons residing in the living brain. The method gaining popularity among 

neurodevelopmental biologists, and heavily used in my thesis work, is the single-cell genetic 

approach. This system makes use of recombinant retroviruses capable of specifically infecting 

dividing cells in vivo. Although this method has tremendous advantages due to its ability to 

deliver a transgene specifically to newborn cells in the DG, there is a caveat that should be 

considered when using this method to perform morphological and phenotypic analysis of 

differentiated neurons. Specifically, since retrovirus infects dividing cells, overexpression of 

transgenes in dividing neuroprogenitors may affect initial neuronal differentiation, which might 

affect subsequent neuronal maturation. One could speculate that ectopic gene expression under a 

retroviral promoter during proliferation and differentiation of neuroprogenators may disrupt the 

cell’s normal biochemical balance during that stage of neurogenesis and interfere with 

subsequent stages in neuronal maturation. For example, when retroviruses are used to deliver a 
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transgene (for example GFP, or miR-137) into a cell, the experimenter doesn’t have control over 

the genomic location the transgene will be inserted. Although researchers suggest retrovirus can 

select active chromatin sties for integration of their viral DNA (Coffin et al., 1990; Naldini et al., 

1996), these mechanisms are poorly understood and viral DNA integration into the genome can 

sometimes lead to unstable mutations in the genome of the host cell(s) (Harbers et al., 1984; 

Soriano et al., 1987). Another potential confound is that it is unknown if the retrovirus may cause 

long-lasting changes in dividing or differentiating cells could impact the development of 

maturing neurons. To address these limitations and confirm that retroviral delivery of miR-137 

affects dendritic morphology during neuronal maturation, and not early stages of neurogenesis 

such as proliferation or differentiation, I expressed miR-137 in post-mitotic hippocampal 

neurons. The limitations I described above have not eliminated the use of retroviral-mediated 

gene delivery to study neuronal maturation, but they are important to consider when thinking 

about additional experiments that can validate your findings. In Future Directions section 7.4 

below, I will discuss a specific molecular modification to the retroviral system that can be used 

to circumvent the caveats I mentioned here. 

 

7.3 Additional studies that could strengthen my dissertation research 

 

7.3.1 Validation of MeCP2 target genes in neurons 

In Smrt et al 2007, I showed a number of possible gene targets that were upregulated in 

the absence of MeCP2. It is a common belief that identification of gene targets that are directly 

or indirectly regulated by MeCP2 in neurons is an important effort in determining how MeCP2 
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exerts it effect on gene expression in the brain (Smrt et al., 2007). Although my research 

contained expression profiles of mRNAs that were differentially regulated in the hippocampus of 

mice lacking MeCP2, we did not perform ChIP on a subset of those genes. Performing ChIP 

would allow us to determine of MeCP2 directly regulated their expression, or if gene expression 

regulation was an indirect consequence of altered MeCP2 expression. To follow up on genes 

regulated by MeCP2, a gain or loss of function approach could be used to confirm if these genes 

are important for specific developmental stages of the neuron, specifically dendrite and dendritic 

spine development. If these MeCP2-regulated genes were found to be linked to dendritic 

morphology, we would express them in the Mecp2 KO to attempt to rescue the mouse Mecp2 

KO phenotype. Additionally, genes that were confirmed to be down-regulated in the absence of 

MeCP2 may be pathway targets of my later miRNA studies. These studies could help identify 

some the factors that are involved in the morphological phenotype observed in previous studies 

(Smrt et al., 2007). 

 

7.3.2 How MeCP2 regulates miR-137 in neurons 

Unpublished data from my dissertation research project show that expression of miR-137 

is upregulated in the absence of MeCP2 in neuronal cultures and cortical brain tissue (Appendix 

Figure A.1). Although these data suggest a link between epigenetic and non-coding RNA 

pathways, these data do not explain the epigenetic mechanism of how MeCP2 may function to 

modulate the expression of non-coding RNAs, specifically miR-137. The data (unpublished, 

Appendix Figure A.5) showed no enrichment of MeCP2 on genomic region surrounding miR-

137 both in mouse hippocampal cultures and mouse adult cortex. This suggests that although 

miR-137 levels are elevated in the absence of MeCP2, MeCP2 may not directly regulate miR-
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137 by direct genomic binding in post-mitotic neurons. In this section I will propose a number of 

possibilities that may explain why elevated miR-137 levels are observed in the absence of 

MeCP2. 

In proliferating adult neural stem cells, elevated expression of miR-137 was found in the 

absence of MeCP2 (Szulwach et al., 2010). To determine if MeCP2 directly interacts with 

genomic regions proximal miR-137, MeCP2-specific ChIP followed by real-time PCR was 

performed in aNSCs. It was found that elements just upstream of miR-137 were enriched 3-fold 

suggesting MeCP2 has a direct association with regions proximal to miR-137. In aNSC, the 

interaction of MeCP2 with miR-137 involves SOX2, an important transcriptional regulator 

specifically expressed in stem cells but not in differentiated neurons. This data suggests that 

MeCP2 is involved in establishing the chromatin state so that transcription can be coordinated in 

stem cells by factors such as SOX2. It was found by Szulwach et al 2010 that Ezh2 is a 

functional target of miR-137. EZH2 is a H3-K27 methytransferase and part of the Polycomb 

group (PcG) of complexes that is related to the maintenance of the “bivalent chromatin state” of 

stem cells. The “bivalent chromatin state” essentially “primes” genes for cell/tissue specific 

expression, but holds them in check by opposing chromatin modifications (Boyer et al., 2006; 

Lee et al., 2006). Regulation of Ezh2 by miR-137 may be important for establishing and 

maintaining the bivalent chromatin state of stem cells, by keeping appropriate levels of H3-K27-

Tri-Me3. A decrease in EZH2 expression resulting from elevated miR-137 is correlated with a 

global decrease in H3-K27-Tri-Me3 levels that can change the chromatin state of aNSCs 

(Szulwach et al., 2010). These changes may persist throughout neurogenesis even when aNSCs 

differentiate into neurons when Ezh2 is no longer expressed.  
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I propose that reduced H3-K27-Tri-Me3 levels in differentiating KO NSCs leads to 

increased expression of specific developmental genes, such as miR-137 in neurons. There are 

several ways to test this hypothesis. To test if the amount of H3-K27-Tri-Me3 bound to miR-137 

genomic region is altered in the absence of MeCP2, I could perform a H3-K27-Tri-M3e histone-

specific ChIP in proliferating NSCs, differentiating NSCs and primary neurons lacking MeCP2 

compared to WT controls. I will then determine whether exogenous MeCP2 or Ezh2 can rescue 

the binding of H3-K27-Tri-M3e to the miR-137 genomic region using ChIP. These experiments 

will show whether H3K27-Me3 levels are altered in KO neurons and whether it is result of 

lacking MeCP2. Another possibility is that H3-K9-Ac, which is associated with transcription 

activation, is increased in miR-137 genomic region of Mecp2 KO aNSCs and such increase may 

persist into the neuronal lineage. It was found previously that H3-K9-Ac was increased 

surrounding the miR-137 gene in proliferating aNSCs lacking MeCP2 (Szulwach et al., 2010). 

Therefore, I could also use a histone-specific ChIP to determine if H3-K9-Ac is altered in 

neuronal differentiating aNSCs lacking MeCP2 compared to WT controls. These data will help 

us to determine if decreased MeCP2 and increased miR-137 expression early in development 

may be related to altered establishment of the chromatin state leading to the altered miR-137 

expression observed in neurons lacking MeCP2.  

Alternate possibilities are that MeCP2 indirectly regulates miR-137 expression by 

regulating an unknown factor (Figure 7.2). For instance, MeCP2 may maintain expression of 

miR-137 by repressing a transcriptional activator of miR-137. Additionally, MeCP2 has been 

shown to be a transcriptional activator for a small subset of genes. Thus, MeCP2 could activate a 

repressor to maintain miR-137 expression. Another possibility based on recent literature showing 

the role of MeCP2 in activity dependant gene regulation, is that MeCP2 may selectively regulate 
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miR-137 in an activity dependant manner (See section 7.4.1 about activity-dependant 

regulation). Thus, detection of genomic binding of MeCP2 may only be possibe under activated 

conditions. In any of these testable scenarios, lack of MeCP2 would lead to increased miR-137 

levels (Appendix Figure A.1).  

 

7.3.3 Other potential targets of miR-137 

Most miRNAs bind to their target 3’UTR with imperfect complementarity as they 

function as translational repressors (Guo et al., 2010). This is in contrast to RNA interference 

(RNAi), where RNAi is a sequence-specific gene silencing mechanism (Hannon, 2002) that uses 

small interfering RNAs (siRNAs) to interact with target mRNAs. siRNAs and miRNAs are 

similar with respect to their biogenesis, molecular characteristics, and functions (He and Hannon, 

2004). As described in Chapter 2.4, both miRNAs and siRNAs are 21-25 nucleotides in length, 

share the RNase-III processing enzyme, Dicer, and interact with the effector complex, RISC. 

miRNAs and siRNAs seem to differ most noticeably in their origin and target recognition. First, 

miRNA precursors are genetically encoded whereas siRNAs are formed from long dsRNAs that 

can be generated from endogenous RNAs that can anneal to form dsRNA (Hannon, 2002). 

Second, miRNAs bind to target 3’UTRs through imperfect complementarity, often at multiple 

sites (Guo et al., 2010). In contrast, siRNA mostly binds only one site forming a perfect duplex 

with the target. It seems that the similarities and differences between miRNA and siRNA have 

been extensively explored; we have yet to identify all the miRNA-interacting complexes and to 

understand the specific actions that distinguish miRNA and siRNA and their respective in vivo 

targets. Thus, the small similarities and differences between these two regulatory mechanisms 
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will certainly emerge as the precise mechanisms of individual non-coding RNAs and associated 

protein complexes are revealed.  

This introduction sets the stage for a major concern surrounding my research, which is 

focused on the effect of a single miRNA on neurodevelopment when there are so many targets of 

any single miRNA based on the non-complementary characteristics of miRNA targeting. Why 

select miR-137 when there are a number of miRNAs expressed in developing neurons and quite 

a few of them might be regulated by MeCP2? This question has been raised for a number of 

reasons. Since the study of miRNA function in the brain is a novel pursuit in neuroscience, 

scientific peers and critics are particularly interested in knowing more about how they can 

optimize selection criteria and target validation. Fortunately, despite the fact that miRNAs are 

only recently becoming a popular target for neurodevelopmental studies, researchers have long 

been using molecular tools to detect RNAs. These tools, along with advances in high-throughput 

microarray screening and popularization of bioinformatic databases have accelerated our ability 

to examine miRNA expression in the brain, and enabled researchers to propose potential 

mechanisms for miRNA function. I will first describe a somewhat standardized process for 

identifying miRNA’s and their functional targets followed by how I identify miR-137 and its 

target MIB1. 

In my studies, we first looked at the expression of miRNAs using miRNA-specific 

microarrays in brain tissue, post-mitotic neurons, undifferentiated neural stem cells, and neural 

stem cells that are differentiated into neurons or astrocytes. This kind of sampling enabled us to 

identify a subset of miRNAs that are enriched in cells derived from the neuronal lineage. This is 

precisely how miR-137 became noticed as a neuronal enriched miRNA that may be important for 

development. The next step is to assess the subset of miRNAs that have been revealed by the 
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array. This selection process can be based on factors such as the degree of expression, or 

relevance to development. When considering miRNAs that are relatively uncharacterized, one 

may chose to study a miRNA based on its expression levels in a certain tissue or cell type. 

However, with the increasing amount of literature on miRNA in the brain, researchers can now 

chose miRNAs to study based on relevance to their research and potentially discover novel 

mechanisms. For example, miR-137 was highly uncharacterized at the time we noticed it on 

arrays, and was chosen based on its neuronal specific expression. Once the miRNA(s) have been 

selected, their expression levels can be confirmed by qRT-PCR. The next step involves the 

mining of reputable bioinformatic databases. The internet is populated with many miRNA 

prediction databases (mentioned in Chapter 6) that use genetic sequences and mathematical 

algorithms to generate a list of possible interactions between a mature miRNA and specific 

sequences of the 3’UTR of a target gene. It has been reported that this method for target 

prediction is very efficient. One may consider using defined selection criteria when choosing a 

target. For example, a subset of potential miRNA targets can be chosen for further analysis based 

on conservation, context score of target ‘‘seed sequences,’’ and known relevance to dendritic 

morphogenesis and neuronal development. Next, it is a common practice in miRNA research to 

take the subset of potential targets and validate them using luciferase assays. This assay is 

designed to confirm that the miRNA binds to the 3’UTR of a target gene to regulate translation. 

The 3’UTR of the potential target genes can be fused to a luciferase reporter, and cells of interest 

can be co-tranfected with the reporter and miRNA(s) of interest. To further confirm that the 

miRNA regulates translation of the target gene by binding the predicted “seed” region, many 

researchers have modified the seed region on the 3’UTR of the target. Based on luciferase 

activity data, identified targets can be further assayed using western blots. For example, one 
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would overexpress or knockdown miRNA in cells and assay protein expression of the target 

gene. Overall, this process allows researchers to discover the expression profiles of miRNAs in a 

tissue of interest, and then derive a one or more protein targets that play a role in the function of 

the cell.  

Previously, I used this process to show miR-137 regulates neuronal development by 

translational regulation of MIB-1 (Smrt et al., 2010). However, during this process many other 

miRNAs and potential miR-137 targets were identified. Other miRNAs identified during our 

initial screening may also be important for neurodevelopment and dendritic morphogenesis. 

Following up on additional miRNAs or miR-137 targets is considered a “lack of studies” because 

it is likely that some of the other miRNAs may be related to the pathway I have identified, and 

that additional miR-137 targets function to shape dendritic and spine development of the neuron. 

However, although there may be many potential targets of miR-137, only a few are likely to be 

true targets of miR-137 and have a function in neuronal maturation. For example, it was 

criticized that I identified SHANK2 as a potential target of miR-137, but didn’t perform 

additional experiments to confirm that gene as a target. SHANK2 is known to specifically play a 

role in spine morphogenesis and function, and I found spine morphology was no different in 

neurons overexpressing miR-137 compared to controls suggesting Shank2 is not a functional 

target of miR-137. However, although SHANK2 is not a likely target for miR-137-mediated 

dendritic maturation, it could potentially mediate miR-137 function in other neuronal 

development aspects. In addition, some of the other potential miR-137 targets may also play a 

role in dendrite morphogenesis to some extent. This additional information not only may shed 

light on the role of miRNAs in neuronal maturation, but also can provide an additional 
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dimension to the complexity of the miRNA regulatory pathway. Thus, these unexplored data I 

have generated can be used to propose future experiments. 

 

7.3.4 Cell type-specific and subcellular localization of miRNA 

The combination of fluorescent in situ hybridization (FISH) and immunohistochemical 

colocalization method is used by many researchers as a tool to characterize the cell type-specific 

and subcellular localization of miRNAs and the proteins they potentially regulate. The major 

technical limitation to this approach is obtaining antibodies and RNA probes that can each label 

their target effectively when used together. It seems that specific combinations of antibodies and 

probes can be challenging to optimize. Using FISH to characterize the subcellular localization of 

miRNA may give clues to its function and could be used to help researchers identify a potential 

miRNA pathway. For example when studying dendritic or spine development, it’s informative to 

know if a specific miRNA is expressed in the dendrites, cell body, or nucleus. ISH combined 

with immunohistochemistry could confirm that the miRNA and its proposed target are 

colocalized within a cellular compartment. In the case of my dissertation research, the co-

localization of miR-137 and MIB-1 in neurons could further support my model. In addition, 

identification of where the interaction of miR-137 with MIB1 takes place would provide further 

mechanistic insight to the relationship between miR-137 with MIB1. Is it in the dendrite, in the 

spine, or in the cell body? Are they selectively colocalized proximal to translation machinery? 

For example, I hypothesize that miR-137 and MIB1 localized in the dendrite near or in the 

dendritic spine because it has been shown that translation of proteins important for synaptic 

function take place locally at the dendrite and at the dendritic spine (Sutton and Schuman, 2005), 

and miR-137 has been shown to be enriched in synaptic fractions (Lugli et al., 2008). I further 
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speculate that this interaction of miR-137 and MIB1 takes place proximal to polysomes located 

in the dendrites and dendritic spine. This hypothesis could be tested in neurons by using FISH 

along with the appropriate probes. This additional information could show where this subcellular 

interaction takes place, and add to the understanding of how miR-137 shapes dendritic 

development through its interaction with MIB1.  

 

7.3.5 Potential function of MIB1 in neuronal maturation 

MIB1 is an ubiquitin ligase known to be important for neurogenesis and 

neurodevelopment (Choe et al., 2007; Itoh et al., 2003; Ossipova et al., 2009). MIB1 is a E3 

ubiquitin ligase and promotes ubiquitination and internalization of the Notch ligand Delta, 

leading to Notch pathway activation. In mice, notch activation by MIB1-positive newborn 

neurons and intermediate progenitors functions to ensure the maintenance of stem cell properties 

of radial glia during neurodevelopment (Yoon et al., 2008). Although we know MIB1 is 

important for neuronal maturation (Choe et al., 2007), the molecular mechanism(s) underlying 

the effect of MIB1 on dendritic development are unclear. One proposed hypothesis is that the 

effect of MIB1 on neurite outgrowth could be explained to some degree by the effect of MIB1 on 

Notch signaling (Choe et al., 2007). Because Notch has been shown to reduce neurite 

morphology, activation of Notch by MIB1 cannot explain my results as published in Smrt et al 

2010. I have found that overexpression of MIB1 leads to increased dendrite complexity and 

acute knockdown leads to reduced dendrite complexity. Choe and colleagues also recognized 

that MIB1 may regulate neurite morphogenesis through pathways other than Notch. For 

example, MIB1 was proposed to regulate neurite morphogenesis by its functional interaction 

with p35/CDK5, where CDK5 activity can stimulate the degradation of MIB1, however it is not 
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known if this interaction is transient because the majority MIB1 and p35/CDK5 are not localized 

in the same compartment (Choe et al., 2007).  

My research reports an increase of dendritic complexity when over expressing MIB1 

while others have reported a decrease in dendritic complexity, however the importance of MIB1 

in neuronal maturation is clearly demonstrated by both the other published literature and our data 

(Choe et al., 2007; Smrt et al., 2010). The reason for this discrepancy is likely due to the cell-

type, and developmental time-point we used. For example, the data shown in Choe et al 2007 

was mostly in cortical neurons, where transfection was performed and morphology was analyzed 

at a time when neurons have made few synaptic connections, and at an earlier time than in my 

studies. In my studies, hippocampal neurons were used, which are more homogeneous and can 

become far more complex compared to cortical neurons, and additional morphological analysis 

were used which included dendritic length, branch points, dendritic ends, and dendritic 

complexity by sholl analysis. Although MIB1 is highly expressed in both embryos and adults, 

one possibility is that the function of MIB1 may vary in cell/tissue specific manner and over a 

developmental time course. There are multiple ways that MIB1 can regulate neuronal maturation 

(Figure 7.2). For example, it was discovered that many other proteins that may interact with 

MIB1 also have a dramatic effect neuronal morphology. One such protein is FAM, a mammalian 

orthologue of the Drosophola protein fat facets. FAM is a deubiquitinating enzyme that can 

remove ubiquitin tags from substrates. FAM/faf has been proposed to control vesicle trafficking 

(Chen et al., 2003a), synaptic plasticity (Chen et al., 2002), and Notch signaling (Overstreet et 

al., 2004). Expression of FAM/faf in neurons causes an increase of synaptic boutons in 

neuromuscular junctions (DiAntonio et al., 2001). The interaction of ubiquitin ligases and 

deubiquitinating enzymes is an important mechanism for modulation of the ubiquitination of 
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protein targets (Nijman et al., 2005), and this interaction could play a underlying role in effect on 

MIB1 on neuronal maturation in my dissertation research.  

The ubiquitin pathway is best known for its role in marking target proteins for specific 

proteolysis by proteasomes; however, the ubiquitin pathway may also be involved in regulating 

the abundance of postsynaptic receptors (Burbea et al., 2002). Using affinity purification and 

mass spectrometry, MIB1 was found to interact with membrane trafficking proteins such as early 

endosomal antigen 1 (EEA1), Rab11-interacting proteins, and synaptosomal associated protein 

of 25 kDa-like protein (SNAP25) (Choe et al., 2007). For example, knocking down EEA1 in 

hippocampal slice cultures using EEA1 antibodies has been shown to increase AMPA, NMDA, 

and kainite mediated excitatory post-synaptic currents, which may be due to impairment of 

internalization of specific and glutamate receptors at the synapse (Selak et al., 2006), and EEA1 

is colocalized with these receptors during synapse formation (Washbourne et al., 2004). Catenins 

have also be suggested to interact with MIB1 by affinity purification (Choe et al., 2007), and it is 

known that alpha-, beta- and delta-catenin are involved in synaptic function and dendritic 

morphogenesis (Arikkath, 2009). Thus, the possible role of the E3 ubiquitin ligase MIB1 and its 

interaction with trafficking proteins like EEA1 or catenins to shape neuronal maturation is 

intriguing, albeit speculative. It is unknown what effect MIB1 may have on the function of its 

proposed interactome such as EEA1 and catenins. Hence, I propose that MIB1 is involved in 

dendritic patterning in neuronal development through its modification of postsynaptic or cell-

adhesion molecules at the synapse. Further studies can be conducted in vitro to confirm the 

physical and functional interaction of MIB1 with these other proteins. For example, affinity 

chromatography and subsequent mass spectrometry has been used to identify MIB1 interacting 

proteins, followed by affinity columns made of GST-MIB1 to isolate target proteins (Choe et al., 
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2007). To test if these molecules interact with MIB1 to shape dendritic morphology in neurons, 

the proteins predicted to interact with MIB1 can be co-transfected with MIB1 in neurons to 

determine if they can alter or rescue the effect of MIB1 on dendritic morphology. Understanding 

this pathway may shed light on the molecular mechanism that leads to the results I see when 

manipulating MIB1 expression, and the underlying neurodevelopmental disorders associated 

with neuronal dendritic deficits. 

 

7.4 Future directions of this project 

 

I have made significant discoveries during my dissertation research that have led to 

multiple publications in peer-reviewed scientific journals. The results of my work have also 

generated many new questions and future directions that can be pursued by other scientists in our 

laboratory and related scientific fields. These future directions are the focus of this section. 

 

7.4.1 Activity-dependant epigenetic regulation (MeCP2) of miRNA 

An important characteristic of MeCP2 is that its function is regulated in a neuronal 

activity-dependent manner. For example, addition of potassium chloride (KCl) will depolarize 

cultured neurons and lead to reduced association of MeCP2 with its known target promoter of 

Bdnf, and also leads to an increase in Bdnf transcription (Chen et al., 2003b). The activity-

dependent function of MeCP2 is regulated by protein phosphorylation, which is known to be an 

important posttranslational modification that can modulate the function of a protein by adding a 

phosphate group to serine, tyrosine, or threonine residues. MeCP2 is predicted to be 
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phosphorylated in at least 10 different sites and the the most studied sites are Serine 421 (S421) 

and S80. MeCP2 can be phosphorylated at S421 and dephosphorylated at S80 under activity-

dependant conditions and is associated with promoter binding to methylated DNA. MeCP2 is 

phosphorylated at S80 and dephosphorylated at S421 under resting conditions and such 

phosphorylation inhibits binding methylated DNA (Chao and Zoghbi, 2009; Zhou et al., 2006).  

Recently, it was found that mutations of specific phosphorylation sites on MeCP2, such as S80A, 

can recapitulate the loss of function phenotype whereas a S421A/S424A double mutant displays 

phenotypes observed in the gain of function model (Tao et al., 2009). This research demonstrates 

the significance of posttranscriptional changes to MeCP2 and how transcriptional regulation by 

MeCP2 can respond to neuronal activity. We know that MeCP2 S421 phosphorylation regulates 

the activity dependant induction of Bdnf transcription (Zhou et al., 2006); however, much is 

unknown about the role of activity-dependant phosphorylation of MeCP2 on the expression of 

specific MeCP2-mediated genes. It was also shown that KCl treatment can induce miR-132 

expression, which targets the Mecp2 3’UTR and inhibits its translation (Klein et al., 2007), 

demonstrating an activity dependant link between MeCP2 and miRNA. Thus, I propose that 

activity-dependant phosphorylation of MeCP2 may be a mechanism by which miRNA 

expression is modulated in developing neurons. It is possible that direct MeCP2-dependant 

epigenetic regulation of non-coding RNAs during neuronal development requires depolarization 

of the cell, such as the depolarization of neurons induced by KCl in previous MeCP2 studies 

(Chen et al., 2003b; Martinowich et al., 2003; Zhou et al., 2006). That is, MeCP2 may have an 

activity-dependant role in regulating of non-coding RNA expression that we have not previously 

explored. Activity dependant regulation of miR-137 by MeCP2 could explain why we see an 

upregulation of miR-137 in the absence of MeCP2, yet MeCP2 does not appear to bind the 
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region upstream of miR-137 using ChIP. A potential future experiment to explore this 

mechanism is to stimulate neuronal cultures with KCL and determine if MeCP2 can bind to 

genomic regions proximal to miR-137 and compare those results to non-stimulated cultures.  

 

7.4.2 Synergistic effects of multiple miRNAs 

The effect of multiple miRNAs on single gene targets and also multiple miRNAs on 

multiple gene targets is an understudied area concerning miRNA functions in the brain. One aim 

is to address the problem of complexity in the network of miRNA-mRNA interactions that may 

play a role neurodevelopment. For example, a potential future experiment would first use 

bioinformatics to identify multiple miRNAs that may converge on a single gene target to regulate 

translation. For example, I previously showed that developing neurons express miR-137 and 

miR-301, and a bioinformatic approach confirmed that are both predicted to bind the Mib1 

3’UTR (Smrt et al., 2010). Interestingly, altered miR-301 and miR-137 levels are found in the 

absence of MeCP2. The hypothesis for this potential future experiment is that both of these 

miRNAs may function together to regulate the expression of MIB1 during the process of 

neuronal development. However, the complexity of such an interaction should be considered 

carefully. For example, do these miRNAs (137 and 301) interact with Mib1 in the same sub-

cellular compartment, and at the same time during development? One possibility is that they both 

work together, at the same time during neuronal maturation to regulate MIB1 protein expression. 

An alternate possibility is that they work at different periods, or in different sub-cellular 

compartments. For example, miR-137 is known to by enriched in the synaptic compartment 

(Lugli et al., 2008), where it is speculated to play a regulatory role on local gene translation, but 

perhaps miR-301 is has its maximum regulatory effect in a non-synaptic fraction of the cell. I 
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speculate that such combinations of altered miRNA expression could contribute to the phenotype 

of Rett syndrome, and could be the focus of a future direction. This “convergence” of multiple 

miRNA’s on a gene target could then be expanded to look at the effect these multiple miRNAs 

have on other targets related to neurodevelopment. Solving the complexity of these regulatory 

networks will shed light on the mechanisms of developmental pathways, and help us to 

understand the pathogenesis of diseases like Rett syndrome. 

 

7.4.3 How MeCP2-regulated miRNAs may regulate synaptic function 

In my previous work, I show that miR-137 overexressing neurons have morphological 

abnormalities, including reduced dendritic complexity and spine density (Smrt et al., 2010). The 

functional relevance of how a modest miR-137-mediated decreased dendritic complexity and 

decreased spine density may affect the function of neurons and synapses remains to be explored. 

Because the synapse is the locus of communication between neurons, one possibility is that 

reductions in dendrite length, complexity, and spine density lead to fewer total synapses on the 

neuron. A neuron with fewer synapses, all else being equal, could affect the capacity to which 

that neuron responds to the surrounding circuitry. Specifically, fewer spines and smaller 

dendrites could result in fewer synapses which would lead to reduced connectivity to 

surrounding neurons. A modest change in dendritic complexity and spine density may be 

detrimental to overall neuronal connectivity and function when considered in the context of an 

entire neural network, such as the hippocampus.  However, I do not imply that a modest 

morphological change alone can interfere with functional circuitry development and lead to 

severe cognitive and motor impairment. It may be possible that changes in other molecular and 

functional characteristics of the neuron lead to the phenotype I observe in neurons 
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overexpressing miR-137. Specifically, it has been shown that there is a shift in the balance 

between synaptic excitation and inhibition in Layer 5 pyridimal neurons in Mecp2-mutant mice 

(Dani et al., 2005). Additionally, deficits in long-term potentiation (LTP) in cortical and 

hippocampal synapses have been reported in Mecp2-mutant mice (Asaka et al., 2006; Moretti et 

al., 2006). It has also been demonstrated that duplication or knock down of MeCP2 can lead to 

altered glutamatergic synapse numbers in hippocampal cultures (Chao et al., 2007). Recently it 

was shown that Mecp2-mutant mice have weaker excitatory synapses and fewer connections in 

Layer 5 neurons (Dani and Nelson, 2009). Thus, these data suggest there is a relationship 

between neural circuits and the RTT phenotype, and that MeCP2 expression is critical for the 

proper formation and balance of excitatory and inhibitory synapses. It is possible that miR-137 

may therefore alter the synaptic function and connectivity in hippocampal neurons. To determine 

if overexpression of miR-137 leads to synaptic deficits similar to those seen in Mecp2-mutant 

mice, a retrovirus carrying GFP and miR-137 can be injected into the mouse hippocampus as 

described in Smrt et al 2010. Hippocampal slice cultures can be prepared from the brains of these 

mice, and whole-cell recordings can be performed in GFP-expressing new dentate granule 

neurons. Spontaneous action potential firing can be measured, which has been shown to be 

significantly decreased in Mecp2-mutant mice (Dani et al., 2005). In addition spontaneous 

excitatory and inhibitory synaptic currents can be measured in these slice cultures, as excitatory 

synaptic charge has been found to be decreased and inhibitory synaptic charge has been found to 

be decreased in Mecp2-mutant mice (Dani et al., 2005). Quantal release of individual 

glutamatergic vesicles can be studied by looking at spontaneous mini excitatory postsynaptic 

currents (mEPSCs) and individual GABA vesicles by spontaneous mini inhibitory postsynaptic 

currents (mIPSCs), which have also been found to be modestly altered in Mecp2-mutant mice 
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(Dani et al., 2005). These studies could help us understand how miR-137 may alter the synaptic 

function in hippocampal neurons. However, electrophysiology methods alone may not tell the 

complete story. It is possible that miR-137 may be important for the development of excitatory 

and inhibitory synapse distribution. The effect of miR-137 on the formation of glutamatergic 

synapses can be determined using immunohistochemisty in mouse cultured hippocampal 

neurons. To do this, the localization of developmentally-regulated synaptic proteins that are 

known to cluster at the synapse can be stained: 1) Excitatory post-synaptic proteins PSD95, and 

NMDA and AMPA receptor subunits GluR2 and NR2b, 2) inhibitory synaptic post-synaptic 

proteins GABA Receptor A, 3) excitatory pre-synaptic proteins scaffolding protein Bassoon, and 

neurotransmitter transporters VGLUT1 and VGLUT2, and 4) the inhibitory pre-synaptic protein 

GAD67. This study will determine if altering the expression of miR-137 leads to changes in the 

distribution of excitatory and inhibitory synaptic proteins. Overall, these studies will help us to 

understand how MeCP2 regulates miRNAs, such as miR-137, may affect synaptic function. 

Additionally, these studies may associate the miR-137 pathway as an underlying mechanism that 

leads to the mysterious altered balance between excitation and inhibition observed in Rett 

syndrome research. 

 

7.4.4 Studying in vivo miRNA functions using mouse genetics 

Previously, I take a gain-of-function approach to study the effect of miR-137 on dendritic 

and dendritic spine development (Smrt et al., 2010). However, we still don’t know the effect of 

knocking out, or reducing miR-137 expression. Thus, a major future direction to my dissertation 

research is to further characterize the importance of miR-137 in dendrite and dendritic spine 

development. I hypothesize that knocking out miR-137 in vivo, will increase dendritic 
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complexity, which is consistent with what I observed previously (Smrt et al., 2010) when I 

knocked down miR-137 in vitro. To test this, a novel miR-137 conditional knockout must be 

generated. These mice can be used to extrapolate meaningful information on the function of 

miR-137 in neurodevelopment. We also don’t know the effects of manipulating miR-137 

expression in different brain regions and at specific developmental periods. Because a novel 

miR-137 conditional knockout or overexpressing mouse will possess the potential for conditional 

loss or gain of miR-137 function, researchers can probe the effect of miR-137 at specific 

developmental periods, or within specific brain regions. For example the conditional miR-137 

mice could be crossbred with a mouse expressing CRE-ERT2 fusion protein under a 

developmentally or tissue specific promoter, such that the effects of gain or loss of miR-137 can 

be studied in a subset of cells when CRE-mediated recombination is induced by Tamoxifen 

(Lagace et al., 2007). Additionally, conditional miR-137 knockout or overexpressing mice could 

be crossbred with Mecp2 mutant mice, and functional or behavioral studies could be performed 

without the invasive use of intracranial virus injection surgery. This proposal is one solution to 

the limitations of in vitro culture system and in vivo retroviral injection I used in my previous 

research. 
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APPENDIX A: 
SUPPLEMENTAL DATA 

 

A.1. miR-137 is upregulated in MeCP2-deficient neurons 

 
 
Goal of the experiment: I have previously shown that MeCP2 deficiency leads to reduced 
neuronal maturation in young neurons of postnatal brains; however gene expression analyses 
yielded limited information about the potential downstream effector(s) (Smrt et al., 2010). The 
goal of these experiments is to determine if miR-137 expression levels is changed in the absence 
of MeCP2. To determine whether MeCP2 regulates neuronal maturation through noncoding 
miRNAs, our collaborators obtained miRNAs expression profiles in NSC derived from young 
adult Mecp2 KO and control littermate mice that were differentiated into neurons for 72 hours. A 
subset of miRNAs, such as miR-137, miR-301, and miR-187, etc exhibited showed altered 
expression in the absence of Mecp2 compared to WT controls (Szulwach et al., 2010). In these 
experiments, I isolated all primary neurons and brain tissues and miR-137 levels were 
determined by Keith Szulwach at the Jin lab.  
 
Results: We looked at altered expression of a subset of miRNAs in adult brain tissue from both 
wildtype and KO animals. Among the candidate miRNA’s displaying altered expression, miR-
137 exhibited increased expression in both E17 primary cultures and brain tissue of Mecp2 WT 
and KO animals. (Figure A.1 A, B), suggesting that the expression of miR-137 is modulated by 
MeCP2.  
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A.2. miR-137 is enriched in the dentate gyrus of the hippocampus 

 
 
Goal of the experiment: It has been shown that miR-137 is expressed in the brain and enriched 
at the synaptic compartment (Siegel et al., 2009; Smalheiser and Lugli, 2009). I rationed that if 
miR-137 is a mediator of MeCP2, it should be expressed in neurons in the adult DG of adult 
hippocampus which is affected by MeCP2 deficiency (Smrt et al., 2007). The goal of this 
experiment is to determine if miR-137 is localized in the adult hippocampus. The brain tissues 
were isolated and prepared for ISH by me at UNM. The tissue was then sent to Yale and ISH 
was done by our collaborator and co-author Manov. Note that ISH in Figure A.2 was published 
in my paper described in chapter 6 (Smrt et al., 2010).  
 
In-situ hybridization: Following transcardial perfusion, brain tissue is equilibrated in 30% 
sucrose, then embedded in OCT (Tissue Tek) and frozen in liquid nitrogen-cooled isopentane. 10 
µm thick serial cryosections were cut in the sagittal plane on a Leica CM3050S cryomicrotome 
and stored at -20C until hybridization could begin. In situ hybridization was carried out as 
outlined previously with a few modifications (Obernosterer et al., 2007). Following tissue 
processing, slides are air-dried, then fixed in 4% PFA and washed in DEPC-treated PBS. Slides 
were then acetylated (590ml DEPC water, 8ml triethanolamine, 1050 µl 37% HCl and 1.5 ml 
acetic anhydride), washed in PBS, treated with Proteinase K (5 µg/ml) and washed again. Slides 
were then prehybridized (50% formamide, 5X SSC, 5X Denhardt’s, 200µg/ml yeast RNA, 500 
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µg/ml salmon sperm DNA, 0.4g Roche blocking reagent and 1.75 ml DEPC water) for 4-8 hours 
at RT. For hybridization 0.1 µl of LNA DIG- or FITC-labeled probe was added to the 
hybridization buffer (same as prehybdrization buffer but with 500 µl 10% CHAPS, 100 µl 20% 
Tween and 1.15ml DEPC water) and applied to the tissue at 50-60C overnight (~20C below the 
predicted melting temperature (Tm) of probe:miRNA). Following hybridization, slides were 
washed in 5X and 0.2X SSC at 60C, followed by buffer B1 (0.1M Tris pH 7.5/0.15M NaCl) at 
RT. Sections were then blocked in 10% FCS in B1 and probed with anti-DIG/FITC-HRP 
antibodies as well as anti-synapsin and anti-neurofilament H. Following incubation in primary 
antibodies, slides were washed in B1 and then equilibrated in buffer B3 (0.1M Tris pH 9.5/0.1M 
NaCl/50Mm MgCl2) for 10 minutes. Developer solution (100mg/ml NBT, 50 mg/ ml BCIP, 24 
mg/ml levamisol and 10% Tween in B3) was then added to the tissue for ~4hours RT. The 
reaction was stopped with washes in PBT, and sections were then probed with dye-coupled 
secondary antibodies. Following final washing steps, slides were mounted in Aquamount and 
visualized using confocal microscopy (UNMHSC Fluorescence Microscopy Shared Resource). 
 
Results: Hybridization with the miR-137-specific probe showed an enrichment of miR-137 
within the DG and molecular layer of the hippocampus compared to the miR-1, an miRNA that 
is expressed at low levels in CNS (Figure A.2 A,B). In the molecular layer, miR-137 expression 
is overlap with the expression of the synaptic protein synapsin. This data, along with previous 
reports from other labs suggests miR-137 my play a functional role in the connectivity of 
neurons in the hippocampus, and may be particularly important for developing neurons in the 
hippocampus. 
 
 

A.3. Characterization of Mecp2-siRNA 

 
 
Goal of the experiment: To determine which Mecp2 siRNA is the most effective for knocking 
down expression of MeCP2. 
 
Cells: 293 cells were cultured in 6cm dishes, and transfected using a CaCl2 transfection method 
which results in ~100% infection efficiency. The cells were collected for protein analysis 
(western blot). 
 
DNA constructs: Mecp2 expression vector in pCDNA3 was a gift from Dr Qiang Chang (Univ 
Wisconsin Madison), Mecp2 shRNA (co-express eGFP) expression vector was purchased from 
SABioscience and one of the four shRNAs was selected based on in vitro efficacy assays.  
  
Results: M1-4 are four constructs purchased from SABiosciences. This data demonstrates M1 is 
more effective.   
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A.4. MeCP2 and mir137 rescue (morphology data) 

 

 
 
Goal of the experiment: I hypothesized that MeCP2-regulated miR-137 modulates neuronal 
dendritic development through MIB1. If this is correct, both MeCP2 and MIB1 would be capable 
of rescuing the dendritic developmental deficits resulting from miR-137 overexpression. The 
rescue of MIB1 has been published and is described in Chapter 6. The rescue by MeCP2 has not 
been published and is exclusively described here. 
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Methods: The methods for cell culture, transfection, and DNA are described previously (Chapter 
6). Mecp2 expression vector in pCDNA3 was a gift from Dr Qiang Chang (Univ Wisconsin 
Madison), Mecp2 shRNA (co-express eGFP) expression vector was purchased from 
SABioscience and one of the four shRNAs was selected based on in vitro efficacy assays.  
 
Results: First, I demonstrated that overexpression of MeCP2 in neurons led to an increase in 
dendritic length of 32% (n = 4, p < 0.01), as well as increased dendritic complexity (F(1,42) = 
7.439, p = 0.009) (Figure A.4 A,B), consistent with previous findings (Jugloff et al., 2005). 
Next, I explored whether MeCP2 could rescue the miR-137-induced deficits in dendritic 
development. To this end, Mecp2 expression plasmid was cotransfected with synthetic miR-137 
RNA. My data show that MeCP2 could rescue the miR-137-mediated reduction both in dendritic 
length (n = 4, 1% difference between MeCP2+miR137 and control, 33% difference between 
MeCP2+miR137 and miR-137) (Figure A.4 A) and in dendritic complexity (F(1,36) = 18.15, p 
< 0.001) (Figure A.4 C). Figures D-F are already published and described in Chapter 6. 

Finally, I investigated whether MIB1 could rescue MeCP2 deficiency-induced deficits in 
dendritic development. To confirm that MeCP2 expression levels were important for dendritic 
development in my model system, I knocked down endogenous MeCP2 in cultured neurons 
using RNAi (Supplemental Figure S6.6). I found that acute knockdown of MeCP2 led to a 39% 
reduction in dendritic length (n = 8, p < 0.0001) and a significant decrease in dendritic 
complexity (F(1,37) = 9.707, p = 0.004) in hippocampal neurons compared with control RNAi 
(Figure A.4 G, H). I then showed that MIB1 expression could indeed rescue the Mecp2 RNAi-
induced reduction both in dendritic length (n = 3, 1% difference between Mib1+RNAi and 
control, 38% difference between Mib1+RNAi and Mecp2 RNAi) (Figure A.4 G) and in 
dendritic complexity (F(1,36) = 11.83, p = 0.002) (Figure A.4 H).  

 Thus, my data suggests that miR-137, which is a potential downstream effector of 
MeCP2, regulates dendritic morphogenesis in developing neurons, at least in part, by 
translational regulation of MIB1 (Figure A.4 I). 

 

A.5. MeCP2/mir-137 ChIP assay in adult brain and cultured post-mitotic 
neurons 
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Goal of the experiment: To determine if MeCP2 directly interacts with genomic regions 
proximal to miR-137, our collaborators and I performed MeCP2-specific chromatin 
immunoprecipitation (ChIP) followed by real-time quantitative PCR across a 7 kb region 
surrounding miR-137 that included most of the highly conserved upstream sequences. I isolated 
chromatin from mouse brains and primary neurons and sent these samples to collaborator Keith 
Szulwach and Peng Jin at Emory to finish ChIP.  
 
Isolation of chromatin from mouse brains or neurons: The ChIP methods are previously 
described in a paper I co-authored (Szulwach et al., 2010). For cultured neurons, E17 cortex was 
used. For P0-P2 pups, a litter was obtained from a Het Mecp2 mom and chromatin was isolated 
from each brain separately. For adult mouse brain, dissected hippocampi and cortex from Mecp2 
WT or KO animals were separated and chromatin was isolated. Each animal is considered n=1, a 
total of n=3 or greater are presented in the data. Note, the ChIP was performed for all samples 
(including both published aNSCs, and unpublished neurons and brain tissue) at the same time. 
 
Results: Immunoprecipitation of chromatin chemically crosslinked to DNA in primary cortical 
neurons using two different MeCP2-specific antibodies demonstrated non-significant enrichment 
of MeCP2, compared to IgG, in the genomic regions proximal to miR-137 (Figure A.5 A). 
Additional ChIP assays were performed on developing brains (Postnatal day 2) and adult brain 
regions (hippocampus and cortex), and again found no enrichment of MeCP2 in this genomic 
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regions (Figure A.5 B-D). Therefore, increased expression of miR-137 in the absence of MeCP2 
may not be due to direct binding of MeCP2 to miR-137. 
 

A.6. Characterization of neuronal cultures 

A. 

 
B. 

 
 
Goal of the experiment: To determine the characteristics and optimize the conditions of 
primary neuronal culture. For example, what is the percentage of neurons with respect to total 
cells that make up a standard neuronal culture? At what timepoint is the percentage of neurons 
the highest? Finally, does AraC enrich the percentage of neurons? Defining these parameters 
enables me to produce an enriched neuronal population which serves as a model system to 
conduct extensive biochemical analysis of neurons. 
 
Cells: Cortical neurons from wildtype E15 fetal mice were grown as dispersed mixed cell 
cultures, as established by the Wilson lab (Washbourne et al., 2002). Cortical neurons were fixed 
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and stained for NeuN (neuronal marker) and dapi (nuclear marker) at 2, 4, 6, and 9 days in 
culture. Stereology was used unbiased sampling and quantification of total cell and neuronal cell 
counts. For araC treatment, fresh araC was added to the neuron media (10ug/mL) for 48 hours, 
then the media was changed to non-araC containing media.  
 
Results: Early timpoints (DIV2) yield the highest percentage of neurons (Figure A.6 A). 
Additionally, although araC enriches the neuronal population (Figure A.6 A), it also kills a large 
amount of total cells including neurons (Figure A.6 B). 
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APPENDIX B: 
UNPUBLISHED MANUSCRIPT 

 
Age-Dependent dynamic alteration of wild type neurons in a 

Novel Mecp2 Heterozygous Mosaic Mouse Model 
 

Richard D. Smrt, Rebecca L. Pfeiffer, and Xinyu Zhao 

 

Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, 

NM 87131; 

 

(This manuscript is in preparation for submission.)  
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B.1. ABSTRACT 
 
Mutations and altered expression of the x-linked MeCP2 protein leads to Rett’s syndrome 

one of the Autistic Spectrum Disorders (ASDs).  MeCP2 deregulation has also been found in 
autism. Most RTT patients are females who are mosaic in the MeCP2 deficiency due to random 
X Chromosome Inactivation (XCI). Given the critical function of MeCP2 in postnatal brain 
development and its clear link to autism, it is important to determine whether MeCP2 mutation 
affects XCI.  Our data suggests that neurons expressing WT MeCP2 in Mecp2 heterozygote 
females have a survival advantage over mutant neurons. To determine whether MeCP2 affects 
XCI, we developed a novel Mecp2 mosaic mouse model, in which one X chromosome expresses 
WT Mecp2 and also expresses GFP while the mutant X chromosome does not. Due to random 
XCI, the female mosaic mice have both WT (GFP+) and mutant (GFP-) Mecp2 neurons that can 
be distinguished by GFP fluorescence. To characterize XCI skewing in our newly generated 
mouse model, we evaluated the HET mosaic mice at three separate time points: 3 months, 6 
months, and 9 months after birth. Using this mouse model, we have determined that MeCP2 
deficiency leads to reduced neuronal survival rather than skewed XCI in Mecp2 heterozygote 
mice. Given the important function of MeCP2 in postnatal brain development understanding how 
Mecp2 mutation affects XCI skewing in neurons will likely provide critical insight in 
understanding the etiology of Rett syndrome. 
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B.2. INTRODUCTION 
 

ASDs, including autism, Asperger disorder, Rett syndrome (RTT), childhood 
disintegrative disorder, and pervasive developmental disorder not otherwise specified, affect one 
in 166 children in the US. Among ASDs, only RTT has been clearly linked to a known gene, X-
linked MECP2 gene (Amir et al., 1999). MECP2 mutations and reduced expression of MeCP2 
protein have also been found in autistic patients (Samaco et al., 2004).  These data suggest that 
MeCP2 deficiency not only is responsible for classic RTT, but is also involved in the etiology of 
autism. Autism affects more boys than girls, with male to female ratio about 4 to 1 (Volkmar et 
al., 1993). This gender difference, together with the discovery of X Chromosome rearrangements 
in autistic patients (Ishikawa-Brush et al., 1997; Rao et al., 1994; Thomas et al., 1999) suggests 
the involvement of genes on the X Chromosome. It is our premises that by studying the function 
of X-linked MeCP2 in neurodevelopment, we will gain critical knowledge in not only RTT but 
also the more complex autism. 

RTT is primarily caused by mutations in the X-linked MECP2 gene encoding a methyl 
CpG binding protein that binds methylated DNA and repress gene transcription. Most RTT 
patients are females who are heterozygote and mosaic in the MeCP2 deficiency due to random X 
Chromosome inactivation. Mammalian female cells inactivate one of the two X Chromosomes, 
and the genes on the inactive X Chromosome, with a few exceptions, are not expressed. X 
Chromosome inactivation occurs during early embryonic development, and it is generally 
irreversible (Plath et al., 2002). While some studies found skewed X Chromosome inactivation 
(one X Chromosome is more active than the other X) in Mecp2 heterozygote females 
(Braunschweig et al., 2004; Young and Zoghbi, 2004), another study does not fully support this 
notion(Metcalf et al., 2006). Skewed X Chromosome inactivation has been shown in both autism 
(Talebizadeh et al., 2005) and X Chromosome linked mental retardation (Plenge et al., 2002). 
Given the important function of MeCP2 in postnatal brain development and reduced MeCP2 
expression is frequently found in autistic brains (Samaco et al., 2005), it is important to 
determine whether MeCP2 mutation affect X Chromosome inactivation pattern and whether 
neurons expressing abnormally lower levels of MeCP2 have negative effect on other neurons. 

Mecp2 mutant mice have provided valuable models in understanding the function of 
MeCP2 in postnatal neuronal development, however most RTT patients are heterozygote females 
and male RTT patients generally die in early infancy. In contrast to the dosage compensation 
mechanism in Drosophila and C. elegans, mammalian female cells inactivate one of the two X 
Chromosomes, and the genes on the inactive X Chromosomes, with a few exceptions, are not 
expressed (Plath et al., 2002). X Chromosome inactivation occurs before the completion of 
gastrulation during early embryonic development, and it is generally random and irreversible 
(Plath et al., 2002). Several groups have shown that both human and mouse Mecp2 heterozygote 
females are mosaic in the Mecp2 mutation and exhibit a uniform distribution of mutant cells.  
However, there is a preferential inactivation of the mutant allele in more than 60% heterozygote 
females, with only 20-40% cells expressing mutant MeCP2 (Braunschweig et al., 2004; Young 
and Zoghbi, 2004). The severity of neurological deficits in both human and mice is partially 
dependant on the X Chromosome inactivation patterns (Braunschweig et al., 2004; Young and 
Zoghbi, 2004). How do heterozygote brains with more than half of their neurons expressing 
functional MeCP2 have such severe neurological deficits? Young et al has demonstrated that 
there is a survival advantage for neurons expressing the wild type Mecp2 allele compared to 
those expressing the mutant allele, suggesting that the skewed ratio of mutant Mecp2 expressing 
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neurons versus wild type Mecp2 expressing neurons could be due to the survival disadvantage of 
mutant neurons (Young and Zoghbi, 2004). However, the problem is further complicated by the 
findings that first, no significant neuronal death has been found in RTT brains (Armstrong, 
2002), and second, in RTT patients or Mecp2 mutant mice, MeCP2 protein expression levels in 
wild type Mecp2 expressing neurons are lower than that of wild type cells of normal brains 
(Braunschweig et al., 2004). These observations suggest that MeCP2 mutation in heterozygote 
females not only affects the development of neurons expressing the mutant allele but also 
neurons expressing the wild type allele. Given the important function of MeCP2 in postnatal 
brain development and reduced MeCP2 expression is frequently found in autistic brains (Samaco 
et al., 2005), it is important to determine whether MeCP2 mutation affects X Chromosome 
inactivation patterns and whether neurons expressing abnormally lower levels of MeCP2 have a 
negative effect on other neurons. Our MeCP2 heterozygote females containing both normal and 
mutated neurons in the same brains provide a unique model for us to understand how neuron-
neuron interactions regulate neuronal maturation and brain function. Neuronal maturation is a 
complex process that is regulated by many genetic and epigenetic factors and is significantly 
influenced by inter-cellular signaling between neurons and between neurons and glia (Waites et 
al., 2005; Webb et al., 2001). It is during this major postnatal maturation period that RTT 
manifests itself. Recent studies suggest that RTT may result from a defect in synaptogenesis 
(Belichenko et al., 1997b; Cohen et al., 2003; Kishi and Macklis, 2004; Matarazzo et al., 2004). 
MeCP2 expression is correlated with neuronal maturation, with an increase in protein levels 
immediately before and during synapse formation and reaching its highest level in mature 
neurons (Balmer et al., 2003; Jung et al., 2003; Shahbazian et al., 2002b). Both RTT patients and 
Mecp2 mutant mice have excess immature neurons in the olfactory epithelium, and reduced 
transition of immature neurons into mature neurons (Matarazzo et al., 2004). RTT patients have 
underdeveloped neuronal axons and dendrites (Armstrong, 1997; Armstrong et al., 1995; 
Kaufmann et al., 1997). Using retrovirus-based in vivo neuron labeling, we have demonstrated 
that newly matured neurons in Mecp2 mutant mice develop fewer synaptic spines (Smrt et al., 
2007). Since each neuron interacts with many other neurons, intercellular signaling, including 
neuron-neuron and neuron-glia interaction, is critical for both development and function (Waites 
et al., 2005; Webb et al., 2001). To date, most MeCP2 studies focus on the intrinsic properties of 
MeCP2 in cells. In order to have a complete picture of how postnatal neural development is 
regulated by MeCP2, it is critical and essential to know whether and how Mecp2 mutation affects 
the function of surrounding wt-Mecp2 expressing neurons that share the microenvironment 
and/or form interactions with mutant neurons in a mosaic Mecp2 system. 

In this study, we show no difference in the percentage of MeCP2 expressing neurons at 3 
months after birth. However at 6 and 9 months, the percentage of MeCP2/GFP positive neurons 
is significantly altered in the experimental mosaic mouse compared to the GFP control female 
mouse.  
 

B.3. MATERIALS AND METHODS 
 
Animals 

All animal procedures were performed according to protocols approved by the University 
of New Mexico Animal Care and Use Committee. The Mecp2 KO mice (Mecp2tm1.1Jae) used in 
this study were created by deleting exons 3 containing the MBD domain of Mecp2 (Chen et al., 
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Figure B.1. Breeding strategy and quantification of GFP+ cells. A. Breeding diagram showing how the mosaic 
mouse model is generated. B. 50% of cells express GFP in the dentate gyrus of the hippocampus in this X-linked 
GFP mouse model.  To quantify, roughly 100 cells from a single z-plane (n=4) were analyzed for GFP 
expression using ImageJ software. A One-sample t-test confirms the actual mean (47.35 +/- 2.33, P=0.32) is not 
different from the expected mean of 50%. 
 
 

2001b). These mice have been bred over 40 generations on to ICR background. They start to 
show neurological symptoms between 5 and 7 weeks of age and die before 10 weeks of age. The 
mosaic mouse line was created by cross breeding Tg-GFPx mice from the Jackson labs with 
Mecp2+/- female mice.  By crossing the WT male (Tg-GFP+/Mecp2+) with a Mecp2 heterozygous 
female (Mecp2+/-), some of the female mosaic offspring will be heterozygous for GFP and 
MeCP2 (Tg-GFP+/-/Mecp2+/-).  Specifically, these mosaic offspring express the WT Mecp2 gene 
and Gfp on one x-chromosome and no Gfp and no Mecp2 on the other (See Figure B.1A).  For 
histological analyses, mice were euthanized by intraperitoneal injection of sodium pentobarbital. 
Mice were then perfused with saline followed by 4% PFA. Brains were dissected out, post-fixed 
overnight in 4% PFA, and then equilibrated in 30% sucrose. Forty-micrometer brain sections 
were generated.  

 

Immunohistochemistry: 
Immunostaining was conducted according to previous works (Barkho et al., 2008; Silber 

et al., 2008; Smrt et al., 2007; Zhao et al., 2003). Mouse Neun (Chemicon 1:5000) and MeCP2 
Chicken (Emory, 1:5000). The secondary antibodies used were AF488 (Molecular Probes, 
1:500) to amplify the endogenous GFP, Cy3 (donkey anti-mouse, 1:500, Sigma), and Mouse 
AF647 (Molecular Probes, 1:500).  After the primary and secondary antibodies were rinsed the 
sections were then stained with Dapi and mounted on glass slides using DABCO for 
coverslipping.  The DABCO helps to prevent fading from microscope exposure.    

 
Confocal microscopy and quantification: 

Images of brain sections were taken using a 63x/1.4 Oil DIC Plan-apochronial lens (Zeiss 
LSM510META Confocal Microscope).  The proportions of GFP/MeCP2expressing neurons 
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were counted using the computer program Metamorph.  The images obtained from confocal 
microscopy were merged and 3 concurrent frames were chosen based upon image quality.  These 
3 frames were then stamped with a 600x600 box.  The number of Neun+ cells were then counted 
and recorded followed by the total number of GFP expressing cells.  The counts were done as 
previously described (Zhao et al. 2003).   

 
Statistical analysis 

All statistical analyses were performed using unpaired, two-tailed, Student’s t-test. The 
data bars and error bars indicate mean ± standard error mean. (s.e.m).  
 

B.4. RESULTS 
 
GFP+/- control mice express GFP in 50% of cells in the hippocampus 

To determine if female Tg-GFPx mice, which are heterozygous for the X-linked GFP 
gene, can faithfully demonstrate random X-Chromosome inactivation in neurons, we quantified 
the percentage of GFP expressing neurons. Specifically, expression of GFP in neurons was 
determined by counting the number of neurons that are GFP-positive (GFP+NeuN+) over the 
total number of neurons (NeuN+) in the dentate gyrus. We show that approximately 50% of 
neurons express GFP in the dentate gyrus of the hippocampus in this X-linked GFP mouse model 
(Figure B.1B). This data suggests that control heterozygous Tg-GFPx mice in our model undergo 
random X-Chromosome inactivation in the hippocampus, consistent with previous data that was 
conducted in other anatomical regions (Hadjantonakis Non-invasive sexing of preimplantation 
stage mammalian embryos 1998).   

To determine if our control GFP mosaic female (Tg-GFP+/-/Mecp2+/+) mice expressed 
GFP in neurons and astrocytes of the cortex and hippocampus, we stained brain tissue sections 
with antibodies against early and late neuronal markers, and astrocytes. Using confocal 
microscopy, we found that brain tissue was mosaic for GFP expression, and that all three 
markers could be found to be colocalized with GFP (Figure B.2 A-C)  
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Figure B.2. Tissue staining showing the co-localization of GFP with other astrocytic/neuronal markers in the 
brain. A.  GFP+ neuron colocalized with NeuN in the cortex. B. GFP+ early neuron colocalized with DCX in the 
hippocampus. C. GFP+ cell colocalized with S100B in the hippocampus. 
 
 

 

 
GFP-positive neurons express MeCP2 in the Mecp2 mosaic mouse model  

To determine if neurons in the Mecp2+/- mice have a survival deficit, we generated a 
novel Mecp2 mouse model by crossing a Mecp2+/- female with a Tg-GFPx male mouse (Figure 
B.1A). The resulting progeny include males which are Mecp2 WT or Mecp2 KO, females which 
are Gfp+/- and Mecp2+/+ (Tg-GFP+/-/Mecp2+/+: used as controls), and females which are GFP+/- 
and Mecp2+/- (Tg-GFP+/-/Mecp2+/-) experimental condition, also referred to in this paper as the 
“mosaic mouse model”). The expression of GFP in all the female progeny is mosaic, in which 
cells expressing GFP indicate that the active X-chromosome contains the Gfp gene. Cells that are 
negative for GFP indicate the X-chromosome containing GFP is silenced. In the Tg-GFP+/-

/Mecp2+/- mosaic mice, the GFP protein expression is found to be linked to wild-type MeCP2 in 
all neurons of the dentate gyrus (Figure B.3B-C). These results indicate that wild-type MeCP2 
and GFP are located on the same X-chromosome in the mosaic model and GFP is consistently 
expressed in conjunction with MeCP2 in adult animals. This design allows us to genotype 
MeCP2 expressing cells through GFP fluorescence. 
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Figure B.3. Tissue staining showing the colocalization of MeCP2 and GFP in the dendate gyrus (DG) of the 
hippocampus. A.  Illustration showing a representative coronal section of the mouse brain. The location of the 
DG is indicated by a square.  B. Comparison of the mosaic mouse (GFPX/MeCP2) and the control (TgGFPX).  
Arrowhead: Cells positive for both MeCP2 and GFP. Arrow: Cells negative for MeCP2 and GFP. C. 
Quantification of cells colocalized with MeCP2 and GFP in the mosaic mouse and the TgGFPX control. In the 
mosaic mouse, it is expected that all MeCP2+ cells are also GFP+. 
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MeCP2 expression varies in heterozygous neurons over time 

In order to characterize XCI skewing in our newly generated mouse model, we evaluated 
the HET mosaic mice at three separate time points: 3 months, 6 months, and 9 months after birth.  
At 3 months, our data show that the percentage of neurons expressing both MeCP2 and GFP in 
the hippocampus are the same for both the GFP+/-/Mecp2+/- mosaic mice and the GFP+/-/Mecp2+/+ 
control mice (Figure B.4A).  At 6 months, the percentage of neurons expressing both MeCP2 and 
GFP has significantly decreased in the experimental mosaic mouse compared to the GFP control 
female mouse (Figure B.4B). However at 9 months, the overall MeCP2/GFP positive neurons is 
significantly higher in the experimental mosaic mouse than in the GFP control female mouse 
(Figure B.4C).    

To extend our characterization of XCI skewing in the brain, we next looked in the cortex 
of our mosaic mouse model. At 3, 6, and 9 months, there is no significant difference in the 
number of GFP/MeCP2 positive neurons between the experimental and control conditions 
(Figure B.4D-F).  These data suggest that there is genetic skewing in the hippocampus of the 
MeCP2 mosaic mice that favor to the WT allele at late adult developmental time points; 
however, there is no effect of X-chromosome skewing in the cortex.   
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Figure B.4. Quantification of the percentage of GFP+ neurons in the hippocampus and cortex. A-C. The 
percentage of GFP+ neurons in the hippocampus relative to the total number of neurons analyzed. D-F. The 
percentage of GFP+ neurons in the cortex relative to the total number of neurons analyzed. G. A color line graph 
describing the same data shown in A-F. 
 
 
 

 

Survival of neurons in TgGFP-X/Mecp2 mosaic mice is not affected by GFP expression  
To confirm GFP alone does not play a role in the genetic skewing, we observe the 

hippocampus at the later time points, we found that the number of GFP/MeCP2 positive neurons 
in the experimental mosaic mouse model are no different than the number of MeCP2 positive 
neurons in Mecp2 heterozygous female mice that do not co-express GFP (Figures B.5A,B). This 
suggests that XCI in the adult Mecp2 mosaic mouse is similar to the traditional non-GFP 
expressing Mecp2 heterozygous mice. 
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Figure B.5. Comparison of GFP+ and GFP- Mecp2 heterozygous mice. A. The percentage of GFP+ neurons (for 
Mecp2+/+/TgGFP+/- and Mecp2+/-/TgGFP+/-) and MeCP2+ neurons (for Mecp2+/+/TgGFP-/-) in the hippocampus of 
3mo old mice relative to the total number of neurons analyzed. B. The percentage of GFP+ neurons (for 
Mecp2+/+/TgGFP+/- and Mecp2+/-/TgGFP+/-) and MeCP2+ neurons (for Mecp2+/+/TgGFP-/-) in the hippocampus of 
6mo old mice relative to the total number of neurons analyzed 
 
 

  

B.5. DISCUSSION 
 

By the creation and analysis of a novel mosaic mouse, we have discovered that X-
chromosome inactivation is skewed in favor of the normal Mecp2 allele over time.  However, 
our data found from our three month time point suggests that skewing does not take place during 
the primary X-chromosome inactivation early in the mouse female’s development. The fact that 
the level of skewing is actually in favor of the mutant allele at the 6 month time point indicated 
that the mutant MeCP2 expressing neurons may have a negative effect on their WT neighbors, 
though overtime this is corrected by a higher proliferation of the WT neurons.  At the 9 month 
time point however there was a significantly higher proportion of WT neurons in the 
hippocampus, suggesting there is skewing occurring in the hippocampus, which is consistent 
with previous reports of XCI in Mecp2 hereozygous females (Braunschweig et al., 2004). 

Studies using Mecp2 mutant mice have greatly advanced our knowledge of RTT 
pathogenesis, however, most RTT patients are heterozygous females and are mosaic for the 
MeCP2 mutation. Mecp2 mosaic female mice, containing neurons both with and without 
mutation of MeCP2, can be distinguished by GFP fluorescence (Fig B.3), providing a unique 
model to study how neuron-neuron interactions regulate neuronal maturation and function, and 
how deficits of a subpopulation of neurons may contribute to autism spectrum disorders. We 
anticipate the results of this study will set the stage for further mechanistic investigations that 
will significantly sharpen our understanding of the pathogenesis of RTT. For example, if 
mutations in Mecp2 affect the development and function of wild type MeCP2 expressing neurons 
in the same brain region, blocking the negative effects of mutant neurons on wild type MeCP2 
expressing neurons or supplying wild type neurons with the factors that are limited in 
heterozygote brains may ultimately lead to stopping or reversing the progression of neurological 
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deficits in RTT females. In summary, X-chromosome skewing may play an important role in the 
severity presented by Rett syndrome patients.  Therefore better understanding of XCI in Rett 
Syndrome may provide valuable insight into the development of the hippocampus and provide 
researchers with answers for the cognitive pathogenesis of RTT.  
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